Spring 2008 Lecture 3
LINEAR ELASTICITY

| ntroduction:

In this lecture, we will learn about elastic deformations. In an elastic deformation, the body
returnsto its original shape when the load is removed.
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Figure 1: A linear elastic deformation. The material returns to the original shape upon removal of
theload. The stress/strain relation is linear for both loading and unloading.

Figure 1 shows the simplest case of a linear elastic deformation where in addition to returning to
the original shape upon removal of the load, the stress/strain relation is linear. Not al elastic
deformations are linear.  Figure 2shows the typical non-linear large elastic deformation of
rubber. However, note that at small strains the stress/strain relation is linear.

We will now review the elastic material properties that define the linear elastic stress/strain
relation of materials.

The linear elastic stresg/strain relation is only valid in the regime of small strains. To simplify the
notation, we will not distinguish the difference between engineeringe and true strain e and the
strain components will be denoted with e.
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Figure 2: A non-linear elastic stress/strain curve for rubber. Notethat at small strains the relation
can be approximated as linear.
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Figure 3: A uniaxial tensile experiment in the directiorx.

Consider a uniaxial loading in the directionx. Figure 3 shows the deformation of the specimen.
We define the Young's Modulus E as the ratio of the imposed normal stress ¢ to the induced
normal strain ein the direction of the stress, i.e.

7 ,
E=2 (1)
£
Note that in this uniaxial test, 0 = oy and all other stress components are equal to zero.
Also, we here denote e = ey, but note that the strains e,y and e,, are not zero!

Equation (1) is known as the one-dimensional Hookes law.

Poisson’s Ratio v :
Let us again consider the uniaxial test shown in Fig. 3. We define the Poissors ratio v as
follows:

€ . . . €z .

v = ——= = (for an isotropic solid!) — — (2)
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where e is the strain in the direction of the uniaxial stress ande,, and e, are the (negative)
strains in the transverse directions.

Figure 4: A shear test.
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Shear Modulus G:

The shear modulusG is defined for the state of shear shown in Figure 4 as follows:
1

v=—7 (3)
(s

Note that for an isotropic material, G is not anew independent property. We will later be

FE
G=— 4)
2(14+ ) )

Here, we concentrate on isotropic solids, i.e. solids that have the same propertiesin all directions.

Generalized Hooke’s Law:

Let us assume that all nine stress components are acting at the same time in the body. Using
superposition of the induced strains when each stress component is acting alone, we can write the
linear elastic equations as follows:

1 .
Epr = E [ﬁ.rr — 1V (Oyy + Tz ]] o Tey = TT-"" (5)
1 Tz A
Eyy = = [ﬂ'yy — v (O + 7. ]] , Tz = (6)
1 i T ="
€2z = E [ﬁ:: — U Tpe + Ty ]] . Trz = & ()

Bulk Modulus, B:

In lecture 2, we expressed the relative change in volumeA = AJ/V in terms of the normal strain
components. Using the definition of the hydrostatic stressom = (%" %y * %z )/3 introduced in lecture
2, A = ex + 6y + &, and expressing the strain components in terms of the stress components via

Hooke’s law, you should be able to easily show that:

Al 1 — 2w 1
..:\ :I—: £y ‘I”'uq.. ‘I’F;; —_—= E [(T'r“r+ﬁt.t. +(T_,_,] - [E] Tm ['b',l
where the bulk modulusB was defined as:
E
B=— (9
3(1— 2v) ’
Note that for the case of Fig. 5 ( o = oy = 0= —9), equ. (9) leadsto the following:
AV 1
;\:—_:—[—] ) 101
P Bl o)

The bulk modulus B thus defines the linear elastic relation between the relative change in volume,
(AVIV), of the material and the applied hydrostatic pressure p.
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Based on the above result we conclude that elastic deformations are incompressible whenv = %,

(which for most materials is not the case!).
Exercise 1: Using the generalized Hooke's law, show that G = E/2(1+v)

(Hint: Consider the plane stress state corresponding to oy = -ayy With all other stress components
zero. This stress state was examined in lecture 1where it was shown to be equivalent to pure shear!)

Figure 5: Hydrostatic pressure o n= 022 = 033 = —p results in change of volume and not in
distortion of the cube.

Effective eastic modulusin plane strain problems;

Figure 6: Plane strain (e, = 0) in athin plane (o33 = 0).

The plane shown in Figure 6 is loaded in tension along direction 1, but is prevented from
contracting along direction 2(we consider the axes 1, 2and 3 to be principal axes). Using @ = 0 (as
specified), o 3 = 0 (free surface) and Hooke’s generalized law, we can show that:

E;‘g:%—V%:O. S0 09 = Uy (11)
T T2 0 2 -
Elzf—vfzf(l—v) (12)

The effective elastic moduluskE' in the direction 1 can now be defined as follows;

o) E .
E'=2= (13)
£1 1 - FJE )
Using the concept of effective elastic modulus alows us to now treat the problem as one-
dimensiona (in direction 1). However, one needs to be careful as it is not aways possible to

simplify this way most deformation problems.




Elastic work (strain energy density):
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Figure 7: Thetensile test in the directionx. The current length is denoted with x and the increment

in length asdx.

The incremental work dW for a uniaxial tension test (see Figure 7) isgiven as:
dW = Fldr (14)

and the work per unit volume (strain energy density) is:

Fda
Az

dw = = Opzdery [1r”

and with integration (recall from Hookes 1D law, o = E€x)

l 1 v 5
W= S0zz€z = -_‘ZEFZ“I (16)

In the general three dimensional stress state, the elastic work per unit volume can be calcul ated
asfollows (use superposition!):
1

wr = B (Crer€rr + Tyy€yy + T22€22 + TayYoey + TyzVyz + T2z V2 (17)



The elastic work can also be written in terms of principal stresses and strains as follows:

w = 5 (o161 + o2€2 + 03€3) (18)

Components of strain energy:

Figure 8: Decomposition of (a) state of stressinto (b) dilatational stresses and (c) distortional
or deviatoric stresses.

A new perspective on strain energy may be gained by viewing the general state of stress as
the superposition of the hydrostatic (dilatational) stresses and the deviatoric (distortional)
stresses (see Fig. 8 and lecture 2).

The hydrostatic stress state (Part (b) of Fig. 8) results in volume change without distortion.
Associated with o, is the dilatational (mean) strain

Em = EI:JW_ V(Om + 0m)) = Ty = [1{]‘)

The dilatational strain energy absorbed per unit volume isgiven as

: ( 2 [ 12
- 1 '{TE (Tpw + Ty + T2z ) |7 —I—r".l'g —l—."TE_J
.1:.1: u — :3_)ﬂmf:m = == = L — = [2“:|

2 2B 136 1sB

The deviatoric stress state (Part (¢) of Fig. 8) produces distortion without change in volume. The
distortional energy per unit volume, Wy, is attributable to the change of shape of the unit volume
while the volume remains constant. To calculateWd, use the strain energy equation (17) with all
strain components expressed in terms of stresses (via Hookées law) and subtract the dilatational
strain energy given in eq. (20). Wefinally arrive at the following expression:



1{:-: ['{"—Trr — ’Jyy:]-z + ('“-Tyy — UJJJQ + [:U:: — Opx ]2 + 6 (T_Ey -+ 7_3; + H_QW)] [21]'

11"'-,5[ = 1

i)

W can also be expressed in terms of principal stresses as follows:

Wy (01 = 02)° + (02 — 73) + (03 — 01)] (22)
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If you are wondering what is the big deal with the above decomposition, you will find later in
this course that the most popular ‘yield criterion (for transition from elastic toplastic
(permanent) deformations) is based onWd taking acritical value (which is a material property).



