Yield and Plastic Flow

I ntroduction

In our overview of the tensile stress-strain curve in Module 4, we described yield as a
permanent molecular rearrangement that begins at a sufficiently high stress, denotedoy in
Fig. 1. The yielding process is very material-dependent, being related directly to molecular
mobility. It is often possible to control the yielding process by optimizing the materials
processing in away that influences mobility. General purpose polystyrene, for instance, is a
weak and brittle plastic often credited with giving plastics a reputation for shoddiness that
plagued the industry for years. This occurs because polystyrene at room temperature has so
little molecular mobility that it experiences brittle fracture at stresses less than those needed
to induce yield with its associated ductile flow. But when that same material is blended with
rubber particles of suitable size and composition, it becomes so tough that it is used for
batting helmets and ultra-durable childreris toys. This magic is done by control of the
yielding process. Yield control to balance strength against toughness is one of the most

important aspects of materials engineering for structural applications, and all engineers
should be aware of the possibilities.
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Figure 1: Yield stressoy as determined by the 0.2% offset method.

Another important reason for understanding yield is more prosaic: if the material is not
allowed to yield, it is not likely to fail. Thisis not true of brittle materials such as ceramics
that fracture before they yield, but in most of the tougher structural materials no damage
occurs before yield. It is common design practice to size the structure so as to keep the
stresses in the elastic range, short of yield by a suitable safety factor. We therefore need to be
able to predict
when vyielding will occur in general multidimensional stress states, given an
experimental value ofs , .

Fracture is driven by normal stresses, acting to separate one atomic plane from another.
Yield, conversely, is driven byshearing stresses, sliding one plane along another. These two
distinct mechanisms are illustrated n Fig. 2. Of course, bonds must be broken during the
sliding associated with yield, but unlike in fracture are allowed to reform in new positions.
This process can generate substantial change in the material, even leading eventually to
fracture (as in bending a metal rod back and forth repeatedly to break it). The “plastic’
deformation that underlies yielding is essentially a viscous flow process, and follows kinetic
laws quite similar to liquids. Like flow in liquids, plastic flow usually takes place without
change in volume, corresponding to Poissorisratio v = 1/2.
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Figure 2: Cracking is caused by normal stresses (a), diding is caused by shear stresses (b).

Multiaxial stress states
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The yield stressay is usually determined in atensile test, where a single uniaxial stress acts.
However, the engineer must be able to predict when yield will occur in more complicated
real-life situations involving multiaxial stresses. This is done by use of gield criterion, an
observation derived from experimental evidence as to just what it is about the stress state that
causes yield. One of the simplest of these criteria, known as the maximum shear stress or
Tresca criterion, states that yield occurs when the maximum shear stress reaches a critical
value Trmax = k. The numerical value ofk for agiven material could be determined directly in a
pure-shear test, such astorsion of a circular shaft, but it can also be found indirectly from the
tension test as well. As shown in Fig. 3, Mohr's circle shows that the maximum shear stress
acts on aplane 45° away from the tensile axis, and is half the tensile stress in magnitude; then
k=s,/2

In cases of plane stress, Mohr’s circle gives the maximum shear stressn that planeas
half the difference of the principal stresses:
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Figure 3: Mohr’s circle construction for yield in uniaxial tension.

Example 1
Usingop = oy = pr/b and o2 = 6, = pr/2b in Eqgn. 1, the shear stressin acylindrical pressure
vessel with closed endsis
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where the 6z subscript indicates a shear stress in a plane tangential to the vessel wall. Based
on this, we might expect the pressure vessel to yield when
Tmaz,fz — k= ':T_:’

e

which would occur at a pressure of
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However, thisanalysisisin error, as can be seen by drawing Mohis circles not only for the
6z plane but for the Or and rz planes as well as shown in Fig. 4.

Figure 4: Principal stresses and Mohr’s circle for closed-end pressure vessel

The shear stresses in the 0r plane are seen to be twice those in the 6z plane, since in the or
plane the second principal stressis zero:
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Yield will therefore occur in theor plane at a pressure of boy/r, half the value needed to cause
yield in the 0z plane. Failing to consider the shear stresses acting in this third direction would
lead to a seriously under designed vessel.

Situations similar to this example occur in plane stress whenever the principal stressesin the
xy plane are of the same sign (both tensile or both compressive). The maximum shear stress,
w hich controlsyield, is half thedifferencebetween the principal stresses; if they are both of
the same sign, an even larger shear stress will occur on the perpendicular plane containing the
larger of the principal stresses in thexy plane.
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Figure 5: Yield locus for the maximum-shear stress criterion



EXAMPLE 2

Figure 6: (@) Circular shaft subjected to simultaneous twisting and tension. (b) Mohts circle
construction.

A circular shaft is subjected to atorque of half that needed to cause yielding as shown in Fig. 6;
we now ask what tensile stress could be applied simultaneously without causing yield.A
Mohr’s circle is drawn with shear stresst = k/2 and unknown tensile stress o. Using the
Tresca maximum-shear yield criterion, yield will occur wher is such that

|' a

e = by (5)+ (5)
o = vk

The Tresca criterion is convenient to use in practice, but a somewhat better fit to experimental data can
often be obtained from the“von Mises’ criterion, in which the driving force for yield is the strain
energy associated with the deviatoric components of stress. Thevon Mises stress (also caled the
equivalentor effectivestress) is defined as
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In terms of the principal stressesthisis

IM = 11._} (o1 — 2)2 + (o1 — 03)2 + (02 — 73)?]

Where the stress differences in parentheses are proportional to the maximum shear stresses on
the three principal planes. (Since the quantities are squared, the order of stresses inside the
parentheses is unimportant.) The Mises stress can al so be written in compact form in terms of
the second invariant of the deviatoric stress tensor Z:



op =/ 35i;545/2 (2)

It can be shown that this is proportional to the total distortional strain energy in the material,
and al so to the shear stress ,; On the “octahedral” plane oriented equally to the 1-2-3 axes.
The von Mises stress is the driving force for damage in many ductile engineering materials,
and isroutinely computed by most commercial finite element stress analysis codes.

The value of von Mises stressoy vy Nneeded to cause yield can be determined from the tensile
yield stressoy, since in tension at the yield point we haves; = oy, 62 =03=0. Then

TMY = 1:-'.—} [Lﬂ'y — '[]13 + oy — [].;,2 + LD — [};,3] = dOyv

Hence the value of von Mises stress needed to cause yield is the same as the simple tensile
yield stress.

The shear yield stressk can similarly be found by inserting the principal stresses corre-
sponding to a state of pure shear in the Mises equation. Usingk = 63 =-03 and o, = 0, we
have:
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Note that this result is different than the Tresca case, in which we hadk = ov/2.
The von Mises criterion can be plotted as ayield locus as well. Just as the Tresca criterion, it
must pass through oy on each axis. However, it plots as an ellipse rather than the prismatic
shape of the Tresca criterion (see Fig. 7).
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Figure 7: Yield locus for the von Mises criterion.

Effect of hydrostatic pressure

Since in the discussion up to now yield has been governed only by shear stress, it has not
mattered whether a uniaxial stressis compressive or tensile; yield occurs whero = +oy. This
corresponds to the hydrostatic component of the stress -p = (ox+ oy+ 67)/3 having no influence
on yield, which is observed experimentally to be valid for slip in metallic systems. Polymers,
however, are much more resistant to yielding in compressive stress states than in tension. The
atomistic motions underlying slip in polymers can be viewed as requiringfree volume’ as



the molecular segments move, and this free volume is diminished by compressive stresses. It
is thus difficult to form solid polymers by deformation processing such as stamping and
forging in the same way steel can be shaped; this is one reason the vast majority of
automobile body panels continue to be made of steel rather than plastic.
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Figure 8: Effect of pressure on the von Mises yield envelope.

This dependency on hydrostatic stress can be modeled by modifying the yield criterion to
state that yield occurs when

Tmaz O Opr = To + Ap (3)
where 1o and A are constants. As p increases (the hydrostatic component of stress becomes
more positive) the shear stress needed for yield becomes greater aswell, since thereisless
free volume and more hindrance to molecular motion. The effect of this modification isto
slide the von Mises ellipse to extend less into the | quadrant and more into the 111 quadrant as
shown in Fig. 8. This shows graphically that greater stresses are needed for yield in
compression, and lesser stresses in tension.

Figure 9: A craze in polystyrene (from R. Kambour,“Crazing,” Encycl opedia of Polymer
Science and Engineering, Wiley-Interscience, 1991).

Several amorphous glassy polymers — notably polystyrene, polymethylmethacrylate, and
polycarbonate — are subject to a yield mechanism termed“crazing” in which long elongated
voids are created within the material by a tensile cavitation process. Figure 9 shows a craze in
polystyrene, grown in plasticizing fluid near Tq. The voids, or crazes, are approximately



1000A thick and microns or more in length, and appear visually to be much like conventional
cracks. They differ from cracks, however, in that the broad faces of the crazes are spanned by
agreat many elongated fibrils that have been drawn from the polymer as the craze opens. The
fibril formation requires shear flow, but the process is also very dependent on free volume. A
successful multiaxial stress criterion for crazing that incorporates both these features has been
proposed of the form

B(T)
ey + da
The left hand side of this relation is proportiona to the shear stress, and the denominator in
the second term on the right hand side is related to the hydrostatic component of the stress. As
the hydrostatic tension increases, the shear needed to cause crazing decreases. The parameters
A and B are adjustable, and both depend on temperature. This relation plots as a batwing on
the yield locus diagram as seen in Fig. 10, approaching a 45 diagonal drawn through the 11

and IV quadrants. Crazing occurs to the right of the curve; note that crazing never occurs in
compressive stress fields.

oy —oy=A(T) +

2

N
Shear s
yielding 3, .7

-
Pure shear

Figure 10: The Sternstein envelopes for crazing and pressure-inhibited shear yielding.

Crazing is a yield mechanism, but it also precipitates brittle fracture as the craze height
increases and the fibrils are brought to rupture. The point where the craze locus crosses the
shear yielding locus is therefore a type of mechanically induced ductile-brittle transition, as
the failure mode switches from shear yielding to craze embrittlement. Environmental agents
such as acetone that expand the free volume in these polymers greatly exacerbate the
tendency for craze brittleness. Conversely, modifications such as rubber particle inclusions
that stabilize the crazes and prevent them from becoming true cracks can provide remarkable
toughness. Rubber particles not only stabilize crazes, they also cause a great increase in the
number of crazes, so the energy absorption of craze formation can add to the toughness as
well. This is the basis of the“high impact polystyrene;” or HIPS, mentioned at the outset of
this chapter.

Effect of rate and temperature

The yield process can be viewed as competing with fracture, and whichever process has the
lowest stress requirements will dominate. As the material is made less and less mobile, for
instance by lowering the temperature or increasing the number and tightness of chemical
bonds, yielding becomes more and more difficult. The fracture process is usually much less
dependent on mobility. Both yield and fracture stresses usually increase with decreasing
temperature, but yield is more temperature-dependent (see Fig. 11). Thisimplies that below a
critical temperature (called the ductile-brittle transition temperature Tog) the material will



fracture before it yields. Several notable failures in ships and pipelines have occurred during
winter temperatures when the steels used in their manufacture were stressed below their Tog
and were thus unable to resist catastrophic crack growth. In polymers, the ductile-brittle
transition temperature is often coincident with the glass transition temperature. Clearly, we
need an engineering model capable of showing how yield depends on temperature, and one
popular approach is outlined below.

Yield processes are thermally activated, stress driven motions, much like the flow of
viscous liquids. Even without going into much detail as to the specifics of the motions, it is
possible to write down quite effective expressions for the dependency of these motions on
strain rate and temperature. In the Eyring view of thermally activated processes, an energy
barrier Ev* must be overcome for the motion to proceed. (We shall use the asterisk
superscript to indicate activation parameters, and the Y subscript here indicates the yield
process.)
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Figure 11: Schematic illustration of the temperature dependence of yield and fracture stress.

A stress actsto lower the barrier when it actsin the direction of flow, and to raise it when

it opposes the flow.

Consider now a constant strain rate test (& = const), in which the stress rises until yield occurs
at o =oy. Attheyield point we havedo/de =0, so afluid like stateis achieved in which an
increment of strain can occur without a corresponding incremental increase in stress.
Analogously with rate theories for viscous flow, an Eyring rate equation can be written for the
yielding process as

—(Ey —ovV¥)
kT
Here k is Boltzman's constant and V* is afactor governing the effectiveness of the stressin

reducing the activation barrier. It must have units of volume for the producteyV* to have
units of energy, and is called the“activation volume’ of the process. Taking logs and

rearranging,
oy  Ey (k) (E)
—_ In|—
T w1 \v) &
Hence plots of oy/T versus In e should be linear with a slopek/V* as seen in Fig. 12, from
which the activation volume may be computed. The horizontal spacing between two lines at
differing temperaturesT; and T, gives the activation energy:

E(ln €2 —In ¢01)
By = —

€ = € exXp (4)
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Apparent activation volumes in polymers are on the order of 5000A3, much larger than a

single repeat unit. Thisistaken to indicate that yield in polymers invol ves the cooperative
motion of several hundred repeat units.

Example 3

Theyield stress for polycarbonate is reported at 60 MPa at room-temperature (23° C =
296° K), and we wish to know its value at 0°C (273°K), keeping the strain rate the same.
This can be accomplished by writing Egn. 4 out twice, once for each temperature, and
then dividing one by the other. The parametersé e and ¢, cancel, leaving

*F R(273) R(206)

From the datain Fig. 12, the yield activation parameters areEy = 309 kJ/mol, V* = 3.9
x 10®m*/mol. Using these along withR = 8.314 Jmol and

::rgi’;i = 60 x 10° I:JI.«"lnj
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Figure 12: Eyring plot showing dependence of yield strength on temperature and strain rate in
polycarbonate (from N.G. McCrum, C.P Buckley and C.B. Bucknall, Principles of Polymer
Engineering, Oxford University Press, 1988).
We have,

oy’ = 61.5MPa

Continuum plasticity

Plasticity theory, which seeks to determine stresses and displacements in structures all or
part of which have been stressed beyond the yield point, is an important aspect of solid
mechanics. The situation is both materially and geometrically nonlinear, so it is not a trivial
undertaking. However, in such areas as metal forming, plasticity theory has provided valuable
insight. We will outline only a few aspects of this field in the following paragraphs, to
introduce some of the fundamental concepts that the reader can extend in future study.

Plastic defor mation

A useful idealization in modeling plastic behavior takes the material to be linearly elastic
up to the yield point as shown in Fig. 13, and then“perfectly plastic’ at strains beyond yield.
Strains up to yield (the line between pointsa and b ) are recoverable, and the material unloads
along the same elastic line it followed during loading; this is conventional elastic response.
But if the material is strained beyond yield (pointb), the “plastic” straining beyond b takes
place at constant stress and is unrecoverable. If the material is strained to point ¢ and then
unloaded, it follows the path cd (a line parallel to the original elastic lineab) rather than
returning along cba. When the stress has been brought to zero (point d), the plastic strain ad
remains as aresidual strain.

Plastic deformation can generate“ residual” stresses in structures, internal stresses that
remain even after the external loads are removed. To illustrate this, consider two rods having
different stress-strain curves, connected in parallel (so their strains are always equal) as
shown in Fig. 14. When the rods are strained up to the yield point of rod B (point a on the
strain

[
b

oyl - —

Figure 13: The elastic-perfectly plastic idealization of plastic deformation.



axis), rod A will have experienced an amount of permanent plastic deformatione”. When the
applied load is removed, rod B unloads along its original stress-strain curve, but rodA follows
a path parallel toits original elastic line. When rodA reaches zero stress (point b), rod B will
still be in tension (point c). In order for the load transmitted by the rods together to come to
zero, rod B will pull rod A into compression until -0z = oa as indicated by pointsd and e.
Residual stresses are left in the rods, and the assembly asawhole is left with aresidual tensile
strain.

Figure 14: Plastic deformation of two-bar assembly.

Compressive residual stress can be valuable if the structure must bear tensile loads.
Similarly to how rapid quenching can be used to make safety glass by putting the surfaces in
compression, plastic deformation can be used to create favorable compressive stresses. One
famous such technique is called“autofrettage;” this is a method used to strengthen cannon
barrels against bursting by pressurizing them from the inside so as to bring the inner portion
of the barrel into the plastic range. When the pressure is removed, the inner portions are |eft
with a compressive residual stress just as with barA in the above example.

Wiredrawing

To quantify the plastic flow processin more detail, consider next the“drawing” of wire®, in
which wire is pulled through areducing die so as to reduce its cross-sectional area fromA, to
A as shown in Fig. 15. Since volume is conserved during plastic deformation, this corresponds
to an axial elongation of L/Lo = A¢/A. Considering the stress state to be simple uniaxial

tension, we have




Figure 15: Wire drawing.
61 =0y, 62 =03 =0
where 1 denotesthe direction along the wire and 2 and 3 are the transverse directions. The

work done in stretching the wire by an increment of lengthdL, per unit volume of material,
is

dW  oyAdL
dU = =
AL AL
Integrating this fromL, to L to obtain the total work:
L FdL L
U= dll = =oy ln —
Lo T 7

The quantity In(L/Lo) isthe logarithmic straine; .

Example 4
The logarithmic strain can be written in terms of either length increase or area reduction,
due to the constancy of volume during plastic deformation: e; .= In(L/Lo) = In(Ad/A). In

terms of diameter reduction, the relation A = nd? /4 leads to:

wdz /4 . do
er = In (m) =21In (E)

Taking the pearlite cell size to shrink commensurately with the diameter, we expect the wire
strength o to vary according to the Hall-Petch relation with 1//d . The relation between
wire strength and logarithmic drawing strain is then
exp l(eq/4)

Vo
The work done by the constant pulling forceF in drawing an initial lengthLO of wire to a

new length L is W = FL. This must equal the work per unit volume done in the die,
multiplied by the total volume of wire:

Tj ox

I
FL=(AL)oy In —
Lo

Written in terms of areareduction, thisis

F=Aoy 111'&71Cl

&

This simple result is useful in estimating the requirements of wire drawing, even though it
neglects the actual complicated flow field within the die and the influence of friction at the
die walls. Both friction at the surface and constraints to flow within the field raise the force
needed in drawing, but the present analysis serves to establish a lower-limit approximation.
It is often written in terms of the drawing stressc; = F/A and the area reduction ratio r =
(Ao - A)Ag = 1- (A/A):

1

Note that the draw stress for a small area reduction is less than the tensile yield stress. In
fact, the maximum area reduction that can be achieved in a single pass can be estimated by
solving for the value of r which brings the draw stress up to the value of the yield stress,

which it obviously cannot exceed. This calculation gives

o = oy In




h1;=1:rmm=l—l=ﬂ.ﬁﬂ
1 — rmaz =
Hence the maximum area reduction is approximately 63%, assuming perfect lubrication at
the die. This lower-bound treatment gives an optimistic result, but is not far from the
approximately 50% reduction often used as a practical limit. If the material hardens during
drawing, the maximum reduction can be slightly greater.

Slip-linefields

In cases of plane strain, there is a graphical technique calledslip-line theory which
permits a more detailed examination of plastic flow fields and the loads needed to create
them. Friction and internal flow constraints can be included, so upper-bound
approximations are obtained that provide more conservative estimates of the forces needed
in deformation. Considerable experience is needed to become proficient in this method, but
the following will outline some of the basic idess.

Consider plane strain in the 1-3 plane, with no strain in the 2-direction. Thereisa
Poisson stress in the 2-direction, given by

1
€2 =0= %[0z —v(o1 +03)]

Sincev=1/2inplastic flow,
L \
gy = Elﬂl + 03)
The hydrostatic component of stressis then

1
P= ?’r‘gl +02+03) = 5(01+03) = 02

Hence the Poisson stress o, in the zero-strain direction is the average of the other two
stresses o1 and o2, and also equal to the hydrostatic component of stress. The stress state can
be specified in terms of the maximum shear stress, which is justk during plastic flow, and
the superimposed hydrostatic pressurep:

g=-—p+k, o2=-p o3=-—-p—Fk

Since the shear stress is equal to k everywhere, the problem is one of determining the
directions of k (the direction of maximum shear, along which slip occurs), and the
magnitude of p.

The graphical technique involves sketching lines that lie along the directions ok. Since
maximum shear stresses act on two orthogonal planes, there will be two sets of these lines,
always perpendicular to one another and referred to asa-lines and B-lines. The direction of
these linesis specified by an inclination angle. Any convenient inclination can be used for
the ¢ = 0 datum, and the identification of a- vs. B-lines is such as to make the shear stress
positive according to the usual convention. As the pressure p varies from point to point,
there is a corresponding variation of the angleo, given by theHencky equationsas

p + 2k = C; = constant, along an a-line

p —2ke = C;, = constant, along a -line

Hence the pressure can be determined from the curvature of the sliplines, once the constant
isknown.



The slip-line field must obey certain constraints at boundaries:

1. Free surfaces. Since there can be no stress normal to a free surface, we can putc; =0
there and then

p=k o1=-p-k=-2k

Hence the pressure is known to be just the shear yield strength at a free surface.
Further more, since the directions normal and tangential to the surface are principal
directions, the directions of maximum shear must be inclined at 48 to the surface.

2. Frictionless surface: The shear stress must be zero tangential to a frictionless surface,
which again means that the tangential and normal directions must be principal
directions. Hence the slip lines must meet the surface at 45. However, there will in
general be a stress acting normal to the surface, soos t 0 and thus p will not be equal
to k.

3. Perfectly rough surface: If the friction is so high as to prevent any tangential motion
at the surface, the shearing must be maximum in a direction that is also tangential to
the surface. One set of slip lines must then be tangential to the surface, and the other
set normal toit.

Figure 16: Slip-line construction for aflat indentation.

Consider a flat indentor of width b being pressed into a semi-infinite block, with

negligible friction (see Fig. 16). Since the sliplines must meet the indentor surface at 49
we can draw atriangular flow field ABC. Since all lines in this region are straight, there can
be no variation in the pressure p, and the field is one of “constant state.” This cannot be the
full extent of the field, however, since it would be constrained both vertically and laterally
by rigid metal. The field must extend to the free surfaces adjacent to the punch, so that
downward motion under the punch can be compensated by upward flow adjacent to it. Two
more triangular regions ADF and BEG are added that satisfy the boundary conditions at free
surfaces, and these are connected to the central triangular regions by “fans’ AFC and BCG.
Fans are very useful in slip-line constructions; they are typically centered on singularities
such as points A and B where there is no defined normal to the surface.
The pressure on the punch needed to establish this field can be determined from the
diplines, and this is one of their principal uses. SinceBE is a free surface, 63 = 0 there and
p = k. The pressure remains constant along line EG since ¢ is unchanging, but as ¢
decreases aong the curve GC (the line curves clockwise), the pressure must increase
according to the Hencky equation. At point C it has rotated through -7/2 so the pressure
thereis



pe + 2kd = pe + 2k (—I}) = constant = pg = k

The pressure remains unchanged along linesCA and CB, so the pressure along the punch
faceisalsok(1 + x). Thetotal stress acting upward on the punch face is therefore

a1=p+k=2k(1+%)

Theratio of punch pressureto thetensile yield strength2k is

% —1+ g — 2571
The factor 2.571 represents the increase over the tensile yield strength caused by the
geometrical constraints on the flow field under the punch.

The Brinell Hardness Testis similar to the punch yielding scenario above, but uses a
hard steel sphere instead of aflat indentor. The Brinell hardnesH is cal culated as the load
applied to the punch divided by the projected area of the indentation. Analysis of the Brinell
test differs somewhat in geometry, but produces aresult not much different than that of the
flat punch:

E =28-29
Ty
Thisrelation isvery useful in estimating the yield strength of metals by simple
nondestructive indentation hardness tests



