
Spring 2008 Lecture 6 

 

PLASTIC INCOMPRESSIBILITY, FLOW RULE 

AND YIELDING IN PLANE STRAIN & 
AXISYMMETRIC PROBLEMS 

Plastic incompressibility and Flow Rule 

In order to motivate the stress/strain relations in the plastic regime, let us consider again the 
tensile test. The specimen is loaded in the 1-direction (see Fig. 1). In addition to straining in 
the 1-direction, shrinking will develop in the 2 and 3 directions. 

 

Figure 1: The tensile test. 

For isotropic deformations: 

 
Note that here 1ε , 2ε  and 3ε  are true strains and elastic deformation is neglected as discussed  

Experimental evidence shows  that plastic deformations are incompressible ( 0=
∆
v
v ). 

 
From equations (1) and (2) we conclude that for the tensile test: 

 
N o t e : I f  the deformation was elastic, we can write using isotropy and the definition of 
Poisson’s ratio: 

 
Many times students (and authors of some textbooks!) confuse the significance of equation (3) 
and think that it is derived from equation (4) using v = 0.5. The bottom line is that equation (4) is 
not applicable here because we only consider plastic deformations and elasticity is neglected. 

 



Continuing with the uniaxial tensile test (Fig. 1), let us calculate the deviatoric stress  
components: 
 

 
Recall that the deviatoric stress components are defined by removing the hydrostatic stress from 
the normal stress components. Since plastic deformations are incompressible they depend on the 
deviatoric stress components and not on the hydrostatic pressure. 
Using equations (3) and (5), we can write: 
 

 
Equation (7) is called the flow rule (the stress/strain relation in the plastic region). The flow rule 
plays ‘short of the role that Hooke’s law plays in the elastic region. Both the flow rule (Eq. (7)) 
and incompressibility condition (Eq. (2)) are valid for multi-dimensional deformations as well 
even though the above discussion was restricted to the uniaxial tensile test. 

Note: A word on the history dependence of plastic deformations 
 
In elastic deformations, the stress at a given level of strain depends only from that level of strain 
(e.g. εσ E= ) and not how we reached that strain. This is not the case in plastic deformations 
where the stress at a given strain depends on the history of deformation that brought you from 
zero strain to strain ε . 
For this reason, we work with strain increments as we deform the material. We calculate the 
plastic strain by adding these increments: 

 
The correct form of the flow rule to be used from now on is thus the following: 

 
and the correct form of the incompressibility condition is: 

 

We emphasize again that even though the above equations were motivated using the tensile 
test, they are valid for multi-dimensional deformations as well. 



 
The flow rule (Equ. (9)) is re-written here in principal stress (strain) axes as follows: 

 
 
where dλ is a material parameter to be calculated. 
Recall that the deviatoric (principal) stress components are defined as: 
 

 
Each incremental strain increment is proportional to the corresponding deviatoric stress 
component (with the constant of proportionality being the same for all components 1,2,3). 
Also we emphasize once more that plastic strain increments depend only through the 
deviatoric stress components and not through the hydrostatic stress σm. 

Plastic work & Effective Strain for the von-Mises yield criterion 

The general form of the incremental work per unit volume for one-dimensional deformations is:  

 

 

We can generalize the above expression in multi-dimensional deformations as follows: 

 

 
The above expressions are general and valid for both elastic and plastic deformations. However, 
here we are again concerned with negligible elastic deformations and large plastic strains. 
Recall that for von-Mises yielding, we already have defined the equivalent stress VMσ  as follows: 

 
It would be nice if we can define an equivalent (or effective) strain increment. εd  We here define 
an effective εd  that is work conjugate to VMσ , i.e. such that: 

 
The idea here is simple: Once you define an equivalent stress (here VMσ ), then εd  cannot be 
defined arbitrarily but it must obey the work-conjugate relation of Equ. (16).  
It can be shown using equations (15), (16) and equations (9), (10) that in terms of principal 
strain increments: 

 



 
Note: that very often in this course you can simplify the expression on the right hand side of 
Equ. (17) using the incompressibility condition 0321 =++ εεε ddd . 
Note: Verify using Equ. (3) that for a uniaxial tensile test, Equ. (17) predicts that 1εε dd = as it 
should be!! 
Note: Equation (17) is in terms of principal strain components. We will not need in this course 
the expression in terms of strain components in the general x, y, z coordinate system. 
Note: In this course, we will not need to define εd  for the Tresca criterion. However, just keep 
in mind that equation (17) is only good for the von-Mises yield criterion and provides the 
equivalent strain increment that is work conjugate to the von-Mises equivalent stress VMσ . 
We will next apply the incompressibility condition, flow rule, equivalent stress & equivalent strain 
definitions to a number of examples that will be useful in the analysis of forming processes (such as 
forging, extrusion, rolling, etc.). Even though the derivations given here may look of no relevance to 
anything, you should trust us that using these equations we will be able later in the course to derive many 
practical results in forming process analysis and design. 

Simplified expressions, VMσ , εd  yield condition & plastic work for plane strain problems 

Assume that 1,2,3 are the principal strain axes and that 02 =ε  (plane strain on the 1, 3 plane). From 
the flow rule (Equ. (11)) using the expressions of Eq. (12) for the deviatoric stress components, we 
compute: 
 
Using the above equation, one can simplify VMσ  as follows: 
 

 
Using this important equation, we can now write the von-Mises yield condition for plane strain as 
follows: 
 

 
 
Let us now calculate εd  for this plane strain condition. Using, 02 =ε  the incompressibility 
condition (Eq. (10)) results in the following: 
 
 

 
 

Substitution of this equation into Eq. (17) results in the following: 
 



Using the above expression for εd  and the von-Mises yield condition, we can compute the 
incremental work per unit volume as follows: 
 
 

 
The above expression will be very useful in energy based analysis of forming processes later in 
this course. 

Example of a plane strain drawing process 

As an application of the above equations, let us consider the plane strain drawing process shown 
in Figure. 2.   We here assume 0=zε  and that x ,  y ,  z  are principal axes.   Following 

 
Figure 2:  drawing process. 

 
Because w >>  t, we can approximate that 0=zε  and thus assume plane strain conditions. The 
material yields inside the deformation zone (from the entrance to the die to the exit from the die. 
We assume that the axes x, y, z remain principal axes everywhere inside the deformation zone, 
the results given earlier for general plane strain conditions, we can summarize the following 
results for this plane strain drawing process (note that here 0=zε , whereas in the general case 
examined we had 02 =ε ): 
 

 

 
 

 
Let p >  0 be the pressure at the contact interface between the die and the workpiece. Assuming 
that the semi-angle α (Fig. 2) of the die is very small (i.e. small reductions), we can consider that 
the axis y is approximately normal to the die/workpiece contact interface and approximate that: 
σy =  -p. Noting that σx >  0, we can re-write equations (24(a, b)) as follows: 



 
Note that equations (24) and (25) are valid everywhere inside the deformation zone. 

An example of a plane strain forging process 

Let us condider the plane strain forging process shown in Fig. 3. The workpiece is constrained in 
direction 2 ( 02 =ε  ) and in addition the surface with normal axis 3 is free (σ3 =  0). Using our 
earlier results for plane strain, we can summarize the following equations for forging processes. 

 

Figure 3:A plane strain compression. The workpiece is constrained in direction 2 and it is free to expand in direction 3.
 

 

 
Simplified expression for VMσ ,  εd yield condition and plastic work for axially symmetric problems 

An axisymmetric body is assumed to have symmetry around the z-axis and the deformation/stresses have 
no dependence on the coordinate θ. In this course we assume that the r ,θ, z axes are principal axes (of 
stress or strain). So all shear stresses shown in Fig. 4 are zero. Typical cases that we will approximate as 
axisymmetric include the deformation of cylinders with circular section, extrusion/drawing of rods, etc. 

 



 

Figure 4:Stress components in a polar coordinate system. In an axisymmetric problem, we assume that 
the axes r, θ, z are principal and that there is no θ dependence of the stresses or strains. 

 
During axisymmetric deformations, the following conditions are true: 

 
These equations are not general, but we will accept them here in order to allow ourselves to work 
with circular geometry, etc. Let us simplify VMσ   for axisymmetric bodies: 

 
and thus the yield condition for axisymmetric deformations can be written as follows: 
Yield Condition For Axisymmetric Bodies: 

 
Using Equ. (27(a)) and the incompressibility condition d ε r + dε θ + d ε z = 0, we can see that: 
 

 
 
 
 



The above equation can be used to simplify the expression for εd  as follows: 

 
In summary, for axisymmetric deformations the following useful results are obtained: 

 
Conditions for continuous (sustained) yielding: 

All forms of yield conditions we have seen up to now are for initiation of yielding (yield stress = 
Y). What do we suppose to do for continuing straining (work-hardening). To make things 
simple, let us consider power-law hardening (σ =  Kε n) and concentrate on the von-Mises yield 
condition. To define the condition between the stress components in order to sustain yielding as 
the material hardens, we proceed as follows: 

•  Using the effective strain ε  we calculate the yield stress (flow stress) of the material as: 
Kε n 

•  The von-Mises criterion is now modified to take the form: 

 

i.e. at each level of ε , the effective von-Mises stress is equal to the current yield stress which is 
calculated based on the uniaxial hardening law but using as strain the equivalent strain ε . 
As such all expressions given earlier for the yield condition or the work expressions are 
applicable for sustained yielding by using the current yield stress (Kε n) instead of Y. 
As an example, for the case of plane drawing of Fig. 2 with a power law hardening material 
model and an initial thickness to, you should be able to easily show that at an arbitrary location 
inside the deformation zone where the thickness is t, the equivalent strain increment, yield stress, 
yield condition and incremental work per unit volume can be written as follows: 
 



 
In these equations, we assume that the stresses/strains, yield stress, etc. are only functions of x 
(i.e. the same in each cross-section of the workpiece) and that the material is yielding 
everywhere within the deformation zone. The restrictions of small reductions, small die semi-
angles, etc. discussed earlier are applicable here as well. 


