Spring 2008
Lecture 1

THE CONCEPT OF STRESS

Uniaxia stress definition:

‘q. Deformed area A

Figure 1: A uniaxial tensiletest. A forceF is applied perpendicular to the areaA. Before the
application of the force, the cross-section areawasA,.
The uniaxial true stresso is defined as follows:
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The engineering or nominal stress is also defined as force/unit area, where the original area
(before the application of the force) is taken:

F
D= —— (%)
A

The relation between the two definitions can be easily derived as follows:

(3)

Stress definition in three dimensions:

We want to define the stress at a point O in a continuous body |oaded by external forces (see Fig.
2). Thefirst step isto “conceptual ly” cut the body into two pieces across a plane that passes from
the point O. Let n be the unit vector normal to the surface generated by the cut as shown in Fig.
3. Here we show only one of the pieces of the body that results from the above cut. The forces
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acting on the cut surface are the internal forces transmitted from the other piece and are
necessary to maintain the two pieces in static equilibrium

)

Figure 3: Internal forces acting on a plane whose normal is n.

For the plane cut shown, let us define the traction vector t, as:

tn = lim 4
n= e A (4)

where AF isthe internal force acting in asmall areaAA around the point O (see Fig. 3). We see
that t, is ‘force intensity’ or ‘stress’ acting on a plane whose normal isn at the point O. If we
consider afixed Cartesian coordinate systemx, y, z with unit vectors e,,ey,e,, then, we can write
the components of the traction vector t,, as follows:

t'n = fn_'re_r + fnyoy + fn:(}: [5:'



We say that we know the state of stress at a point if for any plane passing through that point
we can calculate the traction vector. Above we calculated the traction t, at the point O
through the plane with normal n. It turns out that if we know the traction vector (force
per unit area) in three mutually perpendicular planes through point O, then we can
always calculate thetraction vector at any other planethrough O.

Select n = g, g and e, (unit vectors in the x, y and z axes, respectively). This defines three
traction forces (te , tey , tez ) acting on the yz, xz and xy intersections per unit areas in the
corresponding planes. Each of these traction forces has three components. In particular, we
can write the following:

to, = Tpe€yp + Oy + Tu @y (6)
le, = Oyz€s + Oyyy + Ty (7)
to, = Ton€y + 0uy€y + 0200, (8)

Figure 4: Stress components on positive x face at point O.

Equation 6 is graphically shown in Fig. 4 and similar representations are applied for equations 7
and 8. We define the stress components to be nothing el se but thex, y, and z components of the
traction vectorste , tey , te; @s given in equations (6), (7) and (8).
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Figure 5: Definition of positive and negative cube faces.

In amatrix form, the“stress at the point O” is denoted as follows:

We depict the three planes discussed above as the faces of an infinitesimal cube enclosing the
point O with the axesx, y and z normal to the three faces of the cube. The face of the cube that
faces in the +x direction is defined as a positive face of the cube. Similarly, we define the
positive cube faces corresponding to the +y and +z directions (see Fig. 5). Let us return to the
decomposition of equ. (6). The traction te is applied on theyz plane. Its component oy is in thex
direction (i.e. normal to the yz plane), while the components oy, and oy, are in they and z
directions, respectively (i.e. they lie in the planeyz). We call the stress component o, the normal
stress component, while g,y and oy, are known as shear stresses Similar terminology is applied to
the other stress components. In general, a stress component a;; denotes the ] component of the
traction (force/unit areq) that is applied in the area with outward positive normal thei axis. The
definition of positive stress componentsis summarized in Fig. 6

To complete this section, we will show how you can calculate the traction t, acting in any plane
with normal n if the stress components in any coordinate system (herex, y, 2) are known. The
components tnx tny and tn, of the traction force t, (see eg. 5) in any plane of unit normal n =nye, +
nyg, + n.L; (see Figure 3) are given as:

tnx Trr Topy  Trs nq
bty ¢ = | Tur Tuy Ty g (10)
Tns Ty Tzy Taz g

Note that n1, n2 and n3 are nothing el se but the ‘directional cosines of the unit vector n.



Also using moment balance concepts, one can show that oy, = oyx, 6y, = 0 aNd ox = ok

Finally, it is customary to denote the shear stresses usingr instead of o. So keep in mind that
where you see 5, we mean oy, etc. Also, for normal stressesit is quite usual not to use repeated
indices. For example, ox is often used to denote ox.

Figure 6: All stress components are considered positive as shown. In the positive cube planes, the stress
components are positive if they point in the positive directions. In the negative cube faces, the stress
components are positive if they point in the negative directions!

Principal stress components:

If you examine all possible sets of coordinate systems (in practice this means rotating the cube around the
point O), then one can show that there is a set of 3 mutually perpendicular planes through the pointO
where all the shear stresses acting on the surfaces of the small cube are zero. Let us denote these specia
axesas 1, 2 and 3. We call them the principal stress directions and the normal stress components acting in
the planes 23, 13 and 12 the principal ¢ 1, 62 and o 3 Stress components, respectively.

Using the principal stress directions, the stress at the pointO can be written in a matrix form as
follows:

a1 0O 0
o= 0 o 0 (11)
0 0 Ty

It is important to understand that the x,y,z stress components (eg. 10) or the principal stress

components (eq. 11) contain the same information about the stress at the pointO (i.e. knowing the

stress components o, Gyy, 0z Ok, Oy 8N 05, You can aways find ¢ 1, 62 and o3 and the directions of

the principal axes - also knowing the directions of the principal stress axes and the values of the
principal stresses one can recover al stress components in anyx, y ,z coordinate system).

However, it isalways easier to work in a coordinate system where there are no shear components
(the algebrawill be much simplified!). Figure 7 presents some examples of stress statesin terms
of principal stress components.

How can we find the principal stress directions and the principal stresses? We will present the
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answer to this question shortly.

UNiaxiaL TENSION
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Figure 7: Examples of stress statesin terms of principal stress components.

Calculation of stress components from one coordinate system to an-
other for plane stress problems:

Consider the xy plane to be the plane of athin sheet The state of stress at a given point can be
approximated to depend only upon the four stress components oy, oxy, oy, and oy that are
considered to be functions of only thex and y. The stress components o, = ox = oy =0, i.e. al
the out of the xy plane stress components are zero. Since the only non zero stress components are
on the xy plane, we call this state plane stress in thexy plane. (Note that in terms of principal
stresses, plane stress means that one of the principal stressesis zero).



(al [

Figure 8: Elements in plane stress.py and py are here the x and y components, respectively, of the
traction vector in the plane AB.

Consider a sguare element (the plane version of the cube) in plane stress (see Fig. 8). Let us
consider a coordinate system x' and y' (on the plane xy) such that 6 is the angle between the X’

axis and the x axis. From equilibrium of forces in the triangularQAB (Fig. 8), it can be shown

that:

Ty + T Opy — O - T '
e + 0820 + 7,526 (12)

) )

Tty =

Ty — T . s
Tpryt = —%511129 + Try{"ﬁ}f‘age [1-3)

To calculate ayy, you can use equ. 12 with 6 + 7/2 instead of 0. Finally:

Tpr + Typ — T . e .
Oyt = —— 5 W 5 0826 — 7,,5026 (14)

Recall that in the above plane stress state thez axisis a principal stress axis. To define the

other two principal directions in thexy plane, we can use eg. (13) with >y> = 0to calculatethe
principal angled.

From Tyiyi =0, one can show that the direction of principal axesis given from:

2T, _
tan2f = ———— (15)
Trx — Oyy



while the principal in plane stresses are given as follows:

f 2
-"_Tr_'[- + ":ryy+ III f.-lr_'[-r - ":ryy =
9 =\ 9

e Fa

+72 (16)

."_',Tl .-:2 =

[ (Oer — O \2 . .
Tmax:v( IIQ yy) +T-{'E’é-' 1)

The calculation of principal stresses in three dimensional stress states is slightly more com-
plicated and it will not be needed in this course.

To find the maximum in plane shear stress (i.e. the maximum shear stress in the planey) take

3. =0 (use equ. (13)), find the angle 9 and then substitute back into equ. (13). We finally can

show the following:

a) (b)
Figure 9: (a) Stress element and (b) Mohr’s circle for a plane stress state.

For the above plane stress state, it is simple to use the so called Mohr Circle(Fig. 9) to perform
stress transformations. The basic rules for using the Mohr circle are as follows:



Figure 10: The Mohr circle provides both normal stressesa./x/ = 0g and a,>y> = 0y aswell asthe
shear stressry>y> = Tp.

Normal stresses are plotted to scale along the abscissa, where tensile is positive and compressive is
negative (Figures 9 and 10).

1. Shear stresses are plotted along the ordinate. A shear stress that induces clockwise rotation of
the stress element is plotted as if it were positive, while one causing counterclockwise rotation
asif it were negative.

2. Angles between planes or directions represented on the circle plot are double the corresponding
angles on the physical plane.

Using the design of Fig. 9, try to validate equations (13), (15), (16) and (17).

Calculation of the maximum shear stress at a point using the principal
stress values:

Above we cal culated the maximum in plane shear stress but not necessarily the maximum shear stress
in al planes! Let the principal stresses be ordered as follows.o1 > > o3. Then the maximum shear
stress max N any plane through the point is given as:

a1 — J3

Tmar = Y [].E‘l]l

a



Figure 11: The maximum shear stress a a point in terms of the principal stresses.

The maxi mum shear stress acts on a plane that makes an angle of 45 degrees with the planesin
which the principal stressese; and o3 act (see Fig. 11).

Note that in eg. (18) the algebraic sign for shear stressesis maintained, i.e. if aprincipal stressis
compressive, then a negative value will be entered in itsvalue in eq. (18).
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Figure 12: The plane stress state o, = —ayy the 450 planes with respect to the x and y axes Let us consider asimple

example of plane stresswhere 6« = -0y = 0> 0and 6, =0 = 5 gnd oz =0that leads to pure shear in
(see Fig. 12). Using (18), we can write:

S S (=7) _, (19)

2 2

i.e. the maximum shear stressis equal too and is applied in the planes 4% from the x and y axes.
The above biaxial stress state is often used to simulate a shear state and as such it has both
analytical and experimental use.
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Stress equilibrium equationsin two-dimensional problems:

do, oy
ay + ay 2 A
dryx dy
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Figure 13: Stress equilibrium in an infinitesimal element under plane stress.

Let us consider an infinitesimal square element of sizesix x dy (the two-dimensional version of
the cube) under plane stress conditions. Let oy, 7y, and ayy be the stress components at the center
of the square. Assuming a continuous variation of the stresses (i.e. that the stress components
vary from point to point in a continuous way), we can approximate the values of the stress
components at the four edges of the square element using a Taylor's series expansion (see Fig.
13). Also, let fx and fy be the body forces per unit area (or per unit volume if you think of the

thickness being equal to 1) applied in the square section (e.g) gravity forces).
Equilibrium of forces in thex direction results in the following equation:

or

(72z +

B g) v+ (

> F,=00r Y (stress) x (area) =0

Ty d
Tyr + _a;_Ty) dr — (r_TH —
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Note that we have here assumed that the stress components are functions of x and y and that oy,
Ty and 7,y are the values of these functions at the center of the square. Similarly the derivatives -
A, etc. are computed at the center of the square. Inthissense it will

have been more accurate in the equation above to write ox(0,0) instead of o, etc. and ¢ £,(0,0)
instead of ~g™*, etc. However, we suppress all these details and we only highlight

the process of derivation aswell asthe final results.

Expanding and rearranging the equation above gives the following

e g8 i Tyr

— + fr=0 (21)
dir iy J2
Following the same approach for 3 F, = 0 gives
OTpy o,
M fy =0 (22)

O dy

The above two equations were derived for the center of the particular cube but it should be
obvious by now that these equations should be valid at any point of the body.

The above derivations are very essential for analyzing deformation problems. In the remaining of
this course we will not use the equilibrium equations in their present form. However, when we
discuss forming processes, we will consider similar calculations to the above and derive stress
equilibrium equations appropriate to the conditions of each of the forming process examined.
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