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Spring 2008 Lecture 3 

LINEAR ELASTICITY 

Introduction: 

In this lecture, we will learn about elastic deformations. In an elastic deformation, the body 
returns to its original shape when the load is removed. 

 

Figure 1: A linear elastic deformation. The material returns to the original shape upon removal of 
the load. The stress/strain relation is linear for both loading and unloading. 

Figure 1 shows the simplest case of a linear elastic deformation where in addition to returning to 
the original shape upon removal of the load, the stress/strain relation is linear. Not all elastic 
deformations are linear.   Figure 2shows the typical non-linear large elastic deformation of 
rubber. However, note that at small strains the stress/strain relation is linear. 

We will now review the elastic material properties that define the linear elastic stress/strain 
relation of materials. 
The linear elastic stress/strain relation is only valid in the regime of small strains. To simplify the 
notation, we will not distinguish the difference between engineering e and true strain e and the 
strain components will be denoted with e. 

 
Figure 2: A non-linear elastic stress/strain curve for rubber. Note that at small strains the relation 

can be approximated as linear. 



 2

Young’s Modulus E: 

 
Figure 3: A uniaxial tensile experiment in the direction x. 

 
Consider a uniaxial loading in the direction x. Figure 3 shows the deformation of the specimen. 
We define the Young’s Modulus E as the ratio of the imposed normal stress σ to the induced 
normal strain e in the direction of the stress, i.e. 

 
Note that in this uniaxial test, σ =  σxx and all other stress components are equal to zero. 
Also, we here denote e = exx but note that the strains eyy and ezz are not zero! 
 
Equation (1) is known as the one-dimensional Hooke’s law. 

Poisson’s Ratio ν : 
Let us again consider the uniaxial test shown in Fig. 3. We define the Poisson’s ratio ν as 
follows: 

 
where exx is the strain in the direction of the uniaxial stress and eyy and ezz are the (negative) 
strains in the transverse directions. 
 

  

Figure 4: A shear test. 
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Shear Modulus G: 

The shear modulus G is defined for the state of shear shown in Figure 4 as follows: 

 
Note that for an isotropic material, G is not a new independent property. We will later be 

 
Here, we concentrate on isotropic solids, i.e. solids that have the same properties in all directions. 
 
Generalized Hooke’s Law: 
 
Let us assume that all nine stress components are acting at the same time in the body. Using 
superposition of the induced strains when each stress component is acting alone, we can write the 
linear elastic equations as follows:  
 

 
 
Bulk Modulus, B: 
In lecture 2, we expressed the relative change in volume ∆ = ∆v/V in terms of the normal strain 
components. Using the definition of the hydrostatic stress σm = ( σ

xx
 + σyy + σzz )/3 introduced in lecture 

2, ∆ = exx + eyy + ezz and expressing the strain components in terms of the stress components via 
Hooke’s law, you should be able to easily show that: 

 
 
where the bulk modulus B was defined as: 

 

Note that for the case of Fig. 5 ( σxx = σyy = σzz = —p), equ. (9) leads to the following: 

  
The bulk modulus B thus defines the linear elastic relation between the relative change in volume, 
(∆V/V), of the material and the applied hydrostatic pressure p. 
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Based on the above result we conclude that elastic deformations are incompressible when ν =  1
2 

(which for most materials is not the case!). 
Exercise 1: Using the generalized Hooke’s law, show that G =  E/2(1+ν) 
 
(Hint: Consider the plane stress state corresponding to σxx =  -σyy with all other stress components 
zero. This stress state was examined in lecture 1where it was shown to be equivalent to pure shear!) 
 
Figure 5: Hydrostatic pressure σ 11 = σ22 = σ33 = —p results in change of volume and not in 
distortion of the cube. 
 

Effective elastic modulus in plane strain problems:  
 
 

 

Figure 6: Plane strain (e22 = 0) in a thin plane (σ33 = 0). 
 
The plane shown in Figure 6 is loaded in tension along direction 1, but is prevented from 
contracting along direction 2(we consider the axes 1, 2and 3 to be principal axes). Using e2 = 0 (as 
specified), σ 3 = 0 (free surface) and Hooke’s generalized law, we can show that: 

 
 
 
 
The effective elastic modulus E' in the direction 1 can now be defined as follows: 

 
Using the concept of effective elastic modulus allows us to now treat the problem as one-
dimensional (in direction 1). However, one needs to be careful as it is not always possible to 
simplify this way most deformation problems. 
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Elastic work (strain energy density): 

 
Figure 7: The tensile test in the direction x. The current length is denoted with x and the increment 

in length as dx. 
 
The incremental work dW for a uniaxial tension test (see Figure 7) is given as: 

and the work per unit volume (strain energy density) is: 

 
 
and with integration (recall from Hooke’s 1D law, σxx =  Eexx) 

 
In the general three dimensional stress state, the elastic work per unit volume can be calculated 
as follows (use superposition!): 
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The elastic work can also be written in terms of principal stresses and strains as follows: 

 

Components of strain energy: 

 

Figure 8: Decomposition of (a) state of stress into (b) dilatational stresses and (c) distortional 
or deviatoric stresses. 

A new perspective on strain energy may be gained by viewing the general state of stress as 
the superposition of the hydrostatic (dilatational) stresses and the deviatoric (distortional) 
stresses (see Fig. 8 and lecture 2). 
The hydrostatic stress state (Part (b) of Fig. 8) results in volume change without distortion. 
Associated with σm is the dilatational (mean) strain 

 
 
The dilatational strain energy absorbed per unit volume is given as 

 
 
The deviatoric stress state (Part (c) of Fig. 8) produces distortion without change in volume. The 
distortional energy per unit volume, Wd, is attributable to the change of shape of the unit volume 
while the volume remains constant. To calculate Wd, use the strain energy equation (17) with all 
strain components expressed in terms of stresses (via Hooke’s law) and subtract the dilatational 
strain energy given in eq. (20). We finally arrive at the following expression: 
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Wd can also be expressed in terms of principal stresses as follows: 

 
 
 
If you are wondering what is the big deal with the above decomposition, you will find later in 
this course that the most popular ‘yield criterion’ (for transition from elastic toplastic 
(permanent) deformations) is based on Wd taking a critical value (which is a materialproperty). 


