
 
Spring 2008 Lecture 5 

WORK HARDENG 

Uniaxial Tension: 

Let us consider a uniaxial tensile test. As you will see in Module I of the laboratory, one collects 
load F versus deflection data l - l0 during such a test on an Instron machine (Fig. 1, lecture 1). 
Here l0 denotes the initial length of the specimen and l the instantaneous length when the applied 
load is F. The plot of F versus ∆l = l - l0 is shown in Fig. 1. Using the definition of the 
engineering stress S and engineering strain e = ∆l

/10, one can easily construct the S versus e 
diagram that looks identical in nature to the F versus ∆l diagram (we effectively only need to 
change the scale of the F - ∆l diagram to obtain the S - e diagram). For convenience, the plot S-e 
is shown on the same Figure 1. 
In Figure 1 you should notice all critical regions and points: (i)the elastic region and the 
(initial)yield point (yield stress Y )defining the transition from the region of elastic (re-
coverable)to elasto-plastic (non-recoverable)deformations, (ii)the region of uniform plastic 
deformation, (iii)the region of non-uniform plastic deformation and (iv)the point where necking 
is initialized. Note that in the region of uniform plastic deformation, the strengthening effect 
offsets the area reduction. After the onset of necking, the deformation becomes localized in the 
necking region. 

We define the ductility as: 

 
Or using area as 

 
Usually as the strength increases, ductility decreases. 
We define the ultimate stress Su as the engineering stress at the onset of necking (i.e. at the point 
of maximum load in a tensile test).  

 
 
Figure 1: (a)The load versus deflection or engineering stress versus engineering strain diagram 
obtained in a uniaxial tensile experiment for a ductile metal (b)To clearly show the transition 
from elastic (recoverable) to elastoplastic (non-recoverable)deformations, the diagram on the left 



is reproduced for small strains e. When plotting stress versus strain using strain scales for large 
deformations, the elastic region is so small that the stress/strain curve in this region looks almost 
vertical!  
 
The 0.2% yield strength  
 
Figure 2 defines the 0.2% yield strength using the offset method. 

 

Figure 2: The 0.2% yield strength is the stress at which a 0.2% permanent offset occurs. This 
definition simplifies the clarification of yield point for cases without a distinct transition from 

elastic to plastic regions (e.g. lower and upper yield points for certain steels, etc.). 

Figure 3 shows again the engineering stress-engineering strain curve in uniaxial tension and the 
state of the specime at the various straining levels. 

 

Figure 3: Engineering stress/strain diagram showing the region of uniform deformation, the 
initiation of necking and the post-uniform deformation up to the point of fracture. 

 
 



The true stress σ - true strain e curve 

Figure 4 shows the engineering stress/engineering strain diagram designed directly from uniaxial 
load/deflection data. As we discussed earlier, engineering strain and engineering stress are not 
very appropriate for the regime of large deformations. To transform the S — e diagram to an 

εσ −  diagram, we need to make use of the following identities: 

 

Both of the above equations are valid only up to the point of necking. Using these equations, the 
S — e diagram of Fig. 4 can be transformed to the εσ −  plot of Fig. 5. Note the big differences in 
between Figures 4 and 5. The εσ −  diagram does not have a maximum (as the S-e plot has)and 
the stress σ increases monotonically. 

  

Figure 4: Engineering stress S versus engineering strain e plot obtained directly from uniaxial 
load F-deflection ∆l data.  

Using the incompressibility condition lxA =  constant, one can write that: 

 



 
 

Figure 5: The true stress-true stain diagram obrained using the plot of Fig. 4 and equations 
(3)and (4). 

Recall the definition of the true strain oll /ln=ε  Differentiating this equation and together with 
equation (5), we arrive at the following very useful expression for the increment d ε  of the true 
strain: 

 
 It is customary to define the level of deformation using the percentage area reduction r: 

 
Another useful relation is introduced here providing a relation between the true strain ε  and the 
%-area reduction r = (A0- A)/A0, one can show that: 

 
 
Based on the above very useful equation, one can also derive the area reduction in terms of true 
strain: 

 
 
 
Loading and Unloading in a Tensile Test: 

Let us consider the uniaxial stress/strain curve of Fig. 6. If we start from no load (point A) and 
we load the specimen up to stress 1σ (point B), the new yield stress becomes 1σ . To understand 
this, remove the load after you reach point B. The unloading process (line BC)is elastic. After 
you reload specimen C, the material behaves elastically until you reach point B. The original 

εσ − curve is followed after point B. 



 

Figure 6: The a versus e curve shown here emphasizes that the ‘yield stress’ increases as you 
deform the material, e.g. Y as shown here is the yield stress of an initially underformed material, 
where as 1σ  is the ‘yield stress’ of the material that you loaded in tension up to point B (strain ε ). 
Loading and unloading in a tensile test is also used here to define the elastic eε (recoverable) and 
plastic (permanent) part pε of the total strain ε . 
 
 
The pe εεε +=  Decomposition: Neglecting Elastic Deformation 

Figure 7 is used to define via an unloading process the decomposition of the strain in elastic and 
plastic parts: 

 

 
When interested in large strains (e.g. in metal forming processes), we can neglect the elastic 
strain eε and approximate: 
 

 

We will use the above approximation most of the time in the remaining of this course! 

 



Figure 7: The pe εεε += decomposition. Hooke’s law is still a valid law but you should notice that 
it only relates stresses σ and elastic strains eε . We will need a new set of equations to define the 
relation of the plastic strains pε with the stressesσ . 

 
Figure 8: In the large deformation regime, we usually neglect elastic deformations (they are too 
small) and thus the unloading curve looks almost a vertical line in theσ — large ε plot. Also, in 
such a diagram the initial elastic region is not visible and the stress curve jumps vertically to the 
initial yield stress Y. 
 
An example of a hardening law:  Power law strain hardening: σ =  Kε n. 

To simplify the representation of the hardening behavior, it is customary to curve-fit the 
εσ − data. The simplest expression that will be used in this course is of the form: 

 

 

 
Figure 9:  The power law hardening approximation.   The strain ε shown here is the total strain 

and we assume that pεε = . 
Note that the model of equation (12) results in a ‘line’ in a logσ-logε  plane (see Fig. 10): 
 

 



 

Figure 10:  Determination of K and n for a power law hardening model by plotting logσ versus 
logε .  

Other Examples of Hardening Laws: Rigid-Plastic (no hardening), Linear Hardening. 

Figure 11 shows two other typical work hardening material models of interest to this class; 
the case of no-hardening (rigid-plastic material model) and the case of linear hardening. The 
initial yield stress Y for these models (including the power-law model) is shown as well. 

 

Figure 11: (a)Rigid-plastic (no hardening), (b)linear hardening and (c)power-law hardening 
models. 



Tensile Instability 

Let us consider a general hardening behavior σ( ε ) ( i . e .  σ  being some function of the strainε ). At the 
onset of necking, the force is maximum: 

At the ultimate point:    dF = 0 (14) 

Using F = σA, the above equation is simplied as follows: 

At the ultimate point :    d(σA)=0,    or    σd A + dσ A = 0, or    

 
Using equation (6), we can simplify the above equation as follows: 
 

 

The above equation is valid at the ultimate point for any true stress/true strain relation. 

 

True strain ε u at the ultimate point for a power law model: σ = Kε n 

For the particular case of σ =  Kε n, we compute σ = K n ε n -1 and equation (16)is simplified as follows: 

 

 

The true strain at the ultimate point is thus given as follows: 

True strain at the ultimate point for a power law material :    ε u =  n                                           
(18) 

The ultimate stress Su for a power law model: Su = K(n/e)n 

Let Fu be the maximum load (at the ultimate point):  Su = Fu/A0. Recall that the ultimate stress is 
an engineering stress (force per unit initial area). Using the result of equation (18), we can 
compute the true stress σu at the ultimate point as follows: 

 

Using the definition of true stress AF /=ε   

 

 

But from the definition of true strain: e = ln A/A0   we conclude that: 

 

 

 

 



 

Combining equations (20)and (21), we finally derive: 
 

 
 
How do you account for the effects of cold-working (hardening) that may have been 
induced initially (by prior processing)? 

Let us consider a metallic specimen that contains no effects of work hardening prior to the 
tensile deformation that is currently undergoing through. We use as an example a =  Kε n to 
describe the hardening behavior characteristics in this tension test (here called test I, Fig. 12). 

 

Figure 12: Test I: Uniaxial straining of the workpiece up to strain ε in. At the end of this test 
after unloading we obtain a specimen with ein permanent deformation. 

Let us load this specimen up to a strain ε in (see Fig. 12). We now remove the load (i.e. we 
unload). There is an ε in permanent deformation left over in the specimen at the end of this test. 

Let us now take the specimen resulted from test I and load it again in tension: What is the 
stress/strain relation resulting from this second test? As it is clear from Fig. 13, the answer is: 
 

 
 
The key idea here is that the hardening law (e.g. a =  Kε n) is a material property independent of a 
particular test and the resulting yield (or flow)stress a needs to be always computed using the 
total (plastic)strain imposed on the material.



 

Figure 13: Test II: Uniaxial straining of the workpiece that was earlier (test I)deformed up to 
strain ein. Note that the material obeys the power law in both tests I and II, but the strain used in 
this hardening law is the total strain induced in the material. 


