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Spring 2008 
 Lecture 1 

THE CONCEPT OF STRESS 

 

Uniaxial stress definition: 

 

 

Figure 1: A uniaxial tensile test. A force F is applied perpendicular to the area A. Before the 
application of the force, the cross-section area was Ao. 

The uniaxial true stress σ is defined as follows: 

F  
σ =  — (1) 

A 

The engineering or nominal stress is also defined as force/unit area, where the original area 
(before the application of the force) is taken: 

F  
σ0 = —— (2) 

Ao 

The relation between the two definitions can be easily derived as follows: 

 

 

Stress definition in three dimensions: 

We want to define the stress at a point O in a continuous body loaded by external forces (see Fig. 
2). The first step is to “conceptually” cut the body into two pieces across a plane that passes from 
the point O. Let n be the unit vector normal to the surface generated by the cut as shown in Fig. 
3. Here we show only one of the pieces of the body that results from the above cut. The forces 
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acting on the cut surface are the internal forces transmitted from the other piece and are 
necessary to maintain the two pieces in static equilibrium.  

Figure 2: Continuous body acted on by external forces. 

 

 

Figure 3: Internal forces acting on a plane whose normal is n. 

For the plane cut shown, let us define the traction vector tn as: 
 

 
 
where ∆F is the internal force acting in a small area ∆A around the point O (see Fig. 3). We see 
that tn is ‘force intensity’ or ‘stress’ acting on a plane whose normal is n at the point O. If we 
consider a fixed Cartesian coordinate system x , y , z  with unit vectors ex,ey,ez, then, we can write 
the components of the traction vector tn as follows: 
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We say that we know the state of stress at a point if for any plane passing through that point 
we can calculate the traction vector. Above we calculated the traction tn at the point O 
through the plane with normal n. It turns out that if we know the traction vector (force 
per unit area) in three mutually perpendicular planes through point O, then we can 
always calculate the traction vector at any other plane through O. 

Select n = ex, ey and ez (unit vectors in the x, y and z axes, respectively). This defines three 
traction forces (tex , tey , tez ) acting on the yz, xz and xy intersections per unit areas in the 
corresponding planes. Each of these traction forces has three components. In particular, we 
can write the following: 

 
 

 
                                    

Figure 4: Stress components on positive x face at point O. 

Equation 6 is graphically shown in Fig. 4 and similar representations are applied for equations 7 
and 8.   We define the stress components to be nothing else but the x, y, and z components of the 
traction vectors tex , tey , tez   as given in equations (6), (7) and (8).  
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Figure 5: Definition of positive and negative cube faces. 

In a matrix form, the “stress at the point O”  is denoted as follows: 

 

We depict the three planes discussed above as the faces of an infinitesimal cube enclosing the 
point O with the axes x, y and z normal to the three faces of the cube. The face of the cube that 
faces in the +x direction is defined as a positive face of the cube. Similarly, we define the 
positive cube faces corresponding to the +y and +z directions (see Fig. 5). Let us return to the 
decomposition of equ. (6). The traction te is applied on the yz plane. Its component σxx is in the x 
direction (i.e. normal to the yz plane), while the components σxy and σxz are in the y and z 
directions, respectively (i.e. they lie in the plane yz). We call the stress component σxx the normal 
stress component, while σxy and σxz are known as shear stresses. Similar terminology is applied to 
the other stress components. In general, a stress component σij denotes the j component of the 
traction (force/unit area) that is applied in the area with outward positive normal the i axis. The 
definition of positive stress components is summarized in Fig. 6 

To complete this section, we will show how you can calculate the traction tn acting in any plane 
with normal n if the stress components in any coordinate system (here x, y, z) are known. The 
components tnx tny and tnz of the traction force tn (see eq. 5) in any plane of unit normal n = nxex + 
nyey + nzez (see Figure 3) are given as: 

 
 

Note that n1, n2 and n3 are nothing else but the ‘directional cosines’ of the unit vector n. 
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Also using moment balance concepts, one can show that σxy =  σyx, σyz =  σzy and σzx =  σxz. 

Finally, it is customary to denote the shear stresses using τ instead of σ. So keep in mind that 
where you see τxy, we mean σxy, etc. Also, for normal stresses it is quite usual not to use repeated 
indices. For example, σx is often used to denote σxx.  

 

 
Figure 6: All stress components are considered positive as shown. In the positive cube planes, the stress 
components are positive if they point in the positive directions. In the negative cube faces, the stress 
components are positive if they point in the negative directions! 

Principal stress components: 

If you examine all possible sets of coordinate systems (in practice this means rotating the cube around the 
point O), then one can show that there is a set of 3 mutually perpendicular planes through the point O 
where all the shear stresses acting on the surfaces of the small cube are zero. Let us denote these special 
axes as 1, 2 and 3. We call them the principal stress directions and the normal stress components acting in 
the planes 23, 13 and 12 the principal σ 1, σ2 and σ 3 stress components, respectively. 
Using the principal stress directions, the stress at the point O can be written in a matrix form as 
follows: 

 

It is important to understand that the x , y , z  stress components (eq. 10) or the principal stress 
components (eq. 11) contain the same information about the stress at the point O (i.e. knowing the 
stress components σxx, σyy, σzz, σxy, σyz and σzx, you can always find σ 1, σ2 and σ3 and the directions of 
the principal axes - also knowing the directions of the principal stress axes and the values of the 
principal stresses one can recover all stress components in any x, y ,z coordinate system). 

However, it is always easier to work in a coordinate system where there are no shear components 
(the algebra will be much simplified!). Figure 7 presents some examples of stress states in terms 
of principal stress components. 
How can we find the principal stress directions and the principal stresses? We will present the 
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answer to this question shortly. 

 

Figure 7: Examples of stress states in terms of principal stress components. 

 
Calculation of stress components from one coordinate system to an-
other for plane stress problems: 

Consider the xy plane to be the plane of a thin sheet. The state of stress at a given point can be 
approximated to depend only upon the four stress components σxx, σxy, σyx, and σyy that are 
considered to be functions of only the x and y. The stress components σzz =  σzx =  σzy =0, i.e. all 
the out of the xy plane stress components are zero. Since the only non zero stress components are 
on the xy plane, we call this state plane stress in the xy plane. (Note that in terms of principal 
stresses, plane stress means that one of the principal stresses is zero). 
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Figure 8: Elements in plane stress. px and py are here the x and y components, respectively, of the 
traction vector in the plane AB. 

Consider a square element (the plane version of the cube) in plane stress (see Fig. 8). Let us 
consider a coordinate system x' and y' (on the plane xy) such that θ is the angle between the x' 
axis and the x axis. From equilibrium of forces in the triangular QAB (Fig. 8), it can be shown 
that:  

 
 

 
 

To calculate σyy, you can use equ. 12 with θ + π/2 instead of θ. Finally: 
 

 
 

 
 
Recall that in the above plane stress state the z axis is a principal stress axis. To define the 
other two principal directions in the xy plane, we can use eq. (13) with τx> y> = 0 to calculate the 
principal angle θ. 
From Txiyi =0, one can show that the direction of principal axes is given from: 
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while the principal in plane stresses are given as follows: 
 

 

 

The calculation of principal stresses in three dimensional stress states is slightly more com-
plicated and it will not be needed in this course. 
To find the maximum in plane shear stress (i.e. the maximum shear stress in the plane xy) take 
dτ3- =0 (use equ. (13)), find the angle 9 and then substitute back into equ. (13). We finally can 
show the following:  

Figure 9: (a) Stress element and (b) Mohr’s circle for a plane stress state. 
 

For the above plane stress state, it is simple to use the so called Mohr Circle (Fig.  9) to perform 
stress transformations. The basic rules for using the Mohr circle are as follows: 
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Figure 10: The Mohr circle provides both normal stresses ax/x/ =  Oθ and ay>y>  = oθ  as well as the 
shear stress rx> y> =  Tθ. 

Normal stresses are plotted to scale along the abscissa, where tensile is positive and compressive is 
negative (Figures 9 and 10). 

1. Shear stresses are plotted along the ordinate. A shear stress that induces clockwise rotation of 
the stress element is plotted as if it were positive, while one causing counterclockwise rotation 
as if it were negative. 

2. Angles between planes or directions represented on the circle plot are double the corresponding 
angles on the physical plane. 

Using the design of Fig. 9, try to validate equations (13), (15), (16) and (17). 

Calculation of the maximum shear stress at a point using the principal 
stress values: 

Above we calculated the maximum in plane shear stress but not necessarily the maximum shear stress 
in all planes! Let the principal stresses be ordered as follows: σ1 ≥ σ2 ≥ σ3. Then the maximum shear 
stress τmax in any plane through the point is given as:  
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Figure 11: The maximum shear stress at a point in terms of the principal stresses. 

The maximum shear stress acts on a plane that makes an angle of 45o degrees with the planes in 
which the principal stresses σ1 and σ3 act (see Fig. 11). 
Note that in eq. (18) the algebraic sign for shear stresses is maintained, i.e. if a principal stress is 
compressive, then a negative value will be entered in its value in eq. (18). 

 

Figure 12: The plane stress state σxx = —σyy the 45o planes with respect to the x and y axes Let us consider a simple 
example of plane stress where σxx = -σyy = σ > 0 and σxy = 0 
(see Fig. 12). Using (18), we can write: 
 

 
 

i.e. the maximum shear stress is equal to σ and is applied in the planes 45o from the x and y axes. 
The above biaxial stress state is often used to simulate a shear state and as such it has both 
analytical and experimental use. 

 

 

= σ and σzz =0 that leads to pure shear in 



 11

Stress equilibrium equations in two-dimensional problems: 

 

Figure 13: Stress equilibrium in an infinitesimal element under plane stress. 

Let us consider an infinitesimal square element of sizes dx x dy (the two-dimensional version of 
the cube) under plane stress conditions. Let σxx, τxy, and σyy be the stress components at the center 
of the square. Assuming a continuous variation of the stresses (i.e. that the stress components 
vary from point to point in a continuous way), we can approximate the values of the stress 
components at the four edges of the square element using a Taylor’s series expansion (see Fig. 
13). Also, let fx and fy be the body forces per unit area (or per unit volume if you think of the 
thickness being equal to 1) applied in the square section (e.g.) gravity forces). 

Equilibrium of forces in the x direction results in the following equation: 
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Note that we have here assumed that the stress components are functions of x and y and that σxx, 
σyy and τxy are the values of these functions at the center of the square. Similarly the derivatives -
f3^, etc.   are computed at the center of the square.   In this sense it will 
 
have been more accurate in the equation above to write σxx(0,0) instead of σxx, etc. and ∂ ∂σ x^(0,0) 
instead of ^g3^, etc. However, we suppress all these details and we only highlight 
 
 
the process of derivation as well as the final results. 

Expanding and rearranging the equation above gives the following 
 

 

 
The above two equations were derived for the center of the particular cube but it should be 
obvious by now that these equations should be valid at any point of the body. 

The above derivations are very essential for analyzing deformation problems. In the remaining of 
this course we will not use the equilibrium equations in their present form. However, when we 
discuss forming processes, we will consider similar calculations to the above and derive stress 
equilibrium equations appropriate to the conditions of each of the forming process examined. 


