
Spring 2008 Lecture 11 

SHEET METAL FORMING PROCESSES 
 
 
Elastic Plane Strain Bending 
 

 
 

Figure 1: Coordinate System for Analysis of Bending 
 

 
Let r be the radius of curvature measured to the mid-plane and z the distance of an element from 
the mid-plane. 
 
 

 
 



For small strain 
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Spring back in sheet bending 
 

 
Figure 2: Strain and stress distribution across sheet thickness. Bending strain (a) varies linearly 
across the section. For the non-work hardening stress-strain relation (b), the bending moment 
causes the stress distribution in (c). Elastic unloading after removal of the loads results in the 

residual stresses shown in (d). 

Let us here assume an ideally elastic-plastic material (yield stress Y=constant). For plane strain, 

0=yε  the flow rule gives 
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Substitution of these expressions in the von-Mises equivalent stress gives, xσσ
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= . Thus the yield condition 

results in the following: 

 
 
To calculate the bending moment, M, needed to create the stress distribution in (c) of the figure 
2, we have: 

 

For the ideally plastic material with a negligible elastic core, ox Y σσ ==
3

2  (a0 is here introduced 

to simplify the notation), and 
 



 
 
Example: 
 
A steel sheet, 0.036 inches thick, is bent to a radius of curvature of 5.0 inches. The flow stress     

Y =  
3

2  33 x 103 psi (i.e. oσ =  33 x 103 psi). E' =33 x 10 6 psi. 

What fraction of the cross section remains elastic? 
What percent error does neglecting the elastic core cause in the calculation of the bending 
moment 

Solution 
 
1. The elastic strain at yielding is ex = a0/E', where E' is the plane-strain modulus, E/ (1 — v2 ) 
The limit of the elastic core will be at z = rex =  ra0/E'. Taking E' as 33 x 10 6 psi, z =  5 x 33 x 
10 3/33 x 10 6 = 0.005 in. The elastic fraction is 2 x 0.005/0.036 = 0.28 or 
 
2. To calculate the bending moment, for the elastic portion (0 ≤  z ≤  0.005), xσ = exE' =  zE'/r , 
and for the plastic portion (0.005 ≤  z ≤  0.018), ox σσ = . 
 

 
 
Using the equation which neglects the elastic core, 
 

 
 
The error is (10.69 - 10.42) /10.42 = 0.026 or 2.  



Let us denote with =∆ )(α  (the value of α after unloading) - (the value of α before 
unloading), for any quantit α . Let us also denote with α ' the quantity α after unloading. 
 
When the external moment is released, the internal moment must also vanish. As the material 
unbends (springs back) elastically, the internal stress distribution results in a zero bending 
moment, i.e. 

 
Since the unloading is elastic, 

 
 
where, because of plane strain, E' =  E/ (1 — v2). The change in strain is given by 

 
where r' is the radius of curvature after springback.  This causes a change in bending moment, 
∆ M, of 

 
Since M' = M + ∆ M = 0 after springback, 
 

 
 
The resulting residual stress,  

 
 

 
 

This is plotted in case d. Note that on the outside surface where z =  t/2, the residual stress is 
compressive, 2

0σσ −=′x , and on the inside surface z =  -t/2 it is tensile 2
0σσ +=′x . 

A similar development can be made for a work-hardening material. If nKεσ = , then 
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Since ∆ M is still described as before and M' = M + ∆ M = 0 after springback, 

 
Finally, 

 
The variations of, xσ , xσ∆ and xσ ′  through the section are shown below. The magnitude of the 
springback predicted can be very large. 

Example 
Find the tool radius necessary to produce a final bend radius of r' = 10 in. in a part made from a 

steel of thickness 0.03 inches. Assume a yield stress of -
4
3 45, 000 psi ( 0σ = 45, 000 psi). 

 
Solution 
If the bend was in a portion of a complex stamping it would be almost impossible to design tooling 
for so much of an overbend.  
 

 
 
Note: The springback problem is actually greater, since at a bend radius of 4.2 inches, the elastic 
core is z =  r 0σ /E' =  4.2 x 45 x 10 3/33 x 10 6 = 0.0057 in., i.e., 38% of the cross section. This 
introduces ≈ 5% error in the moment value.  
 
Bending with Superimposed Tension 
Such allowances for springback would cause severe problems in tool design, but fortunately 
there is a relatively simple solution. Often, as in stretch forming, the tooling does not apply a 
pure bending moment as assumed above. Rather, tension is applied simultaneously with bending. 
With increasing tensile forces, Fx, the neutral plane shifts towards the inside of the bend and in 
most 

 
 

Figure 3: Stress distribution under bending moment and after unloading for a work-hardening 
material. 



operations, this tension is sufficient to move the neutral plane completely out of the sheet so 
that the entire cross section yields in tension. For such a case, the strain and stress 
distributions are sketched in Figure 4. 

Sheet Bendability 
 
If bend radius is too sharp, excessive tensile strain on outside surface can cause cracking, while 
buckling can occur on the inside surface. 
 
The limiting values of r/t have been shown to be function of the tensile ductility ( % of elongation 
at fracture or % of area reduction at fracture). 
 

 
where R = inside radius of curvature (i.e.
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Figure 4: Bending with superimposed tension. With sufficient tension, the neutral axis moves 
out of the sheet so the strain is tensile across the entire section, (a). With the stress-strain curve 

shown in (b), the stress distribution in (c) results. After removal of the moment, elastic 
unloading leaves very minor residual stresses, as shown in (d). 

 
The above correlation is not accurate for sharp bends (low r/t) because the neutral axis shifts 
from the mid-plane and the amount of shift depends upon the applied tension and the frictional 
conditions. With tight bends (small r/h), the neutral axis shifts toward the inside; there are several 
reasons for this. 
 
The cross section at the inside will increase while the outside decreases and the magnitude of 
the true strain (and hence the flow stress in a work-hardening material) increases faster with z in 
compression than tension. As a consequence, the neutral axis moves inward to compensate for 
the higher stresses and greater cross section. In non-symmetric sections, transition from elastic to 
plastic flow will not occur simultaneously on both sides of the bend and, consequently, as yielding 
starts, there will be a shift of the neutral axis toward the heavier sections. 



Figure 5: Correlation of limiting bend severity, f, with tensile ductility 


