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Spring 2008  
Lecture 2 

HYDROSTATIC-DEVIATORIC STRESS 

DECOMPOSITION AND 

THE CONCEPT OF STRAIN 

Hydrostatic and deviatoric stress components: 

Let us consider the stress matrix representation [a] at a point in the body: 

 

It is convenient and useful to split the stress matrix into two parts, one called the spherical or the 
hydrostatic part and the other one the deviatoric part. 

At first, the hydrostatic stress am is defined as follows:  

 

We define as hydrostatic stress state, the following: 

 

 The name hydrostatic is used to emphasize the similar nature of the above state with the one 
applied on a solid cube inside a liquid (see Fig.1). 
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The deviatoric stress state (matrix) [a'] is now defined as the difference of the stress matrix [a] 
(equ.(1)) from the hystrostatic stress matrix given by equation (3) ie. 

 

 

Figure 1: A hydrostatic stress state with p =—σm. 

 

 Figure 2: The decomposition of stress in hydrostatic and deviatoric parts. 
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In terms of the principal stresses, the principal deviatoric stress components can be written as 
follows: 

 
A graphical representation of the above decomposition of the stress matrix is shown in Fig.2.We 
will later see that the hydrostatic stress part is related to the change of volume of a material 
during deformation, while the deviatoric part is responsible for the induced distortion. 
Uniaxial Strain: 

Consider a bar of length Lo.By applying forces as shown in Fig.3(a), we extend the length 
of the bar by an amount ∆L = L - Lo. 
We define the nominal or engineering strain e as follows (see Fig.3). 
 

 

 

Figure 3: Definition of the uniaxial strain (a) Tensile and (b) Compressive. Lo is the original 
length and ∆L the length change after the load application. 
 
In addition to the above normal nominal strain, one can define the engineering shear strain γ as 
the change of angle as shown in Fig.4.For small angle change, we can write: 

 
Figure 5 shows both the deformed and undeformed configurations of an infinitesimal cube under 
uniaxial tension and pure shear. 
 Both of the above definitions are applicable only for small deformations (e.g. equation (6) is 
applicable for stretches less than 2 % in tension).Why is that? 
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Figure 4: Shear strains are used to define change of angles upon application of forces. 

 

Figure 5: Infinitesimal element subjected to: (a) uniaxial tension with the resulting deformation 
and (b) pure shear with the resulting deformation. 

 
Let us use two examples to demonstrate why the above definitions are not appropriate for 
large deformations. Let us consider a tensile experiment in which a specimen of length Lo 
is elongated to length 2Lo.Using equ . (6 ) ,  the predicted engineering strain is e= (2 Lo - 
Lo)/ Lo=1 . Let us now assume that the above extension from Lo to 2Lo is achieved in two 
stages; from Lo to 1.5Lo and from 1.5Lo to 2 L o . I n  the first stage, the engineering strain is 
e1= (1.5 Lo - Lo)/ Lo=0.5 while in the second stage e2= (2 Lo -1.5 Lo)/ Lo=0.333. One expects 
that, e1 + e2 should be equal to e = 1.Unfortunately, e1 + e2 = 0.833  (This implies that the 
engineering strain is not additive). 

As a second example, let us consider again the tension experiment that elongates a 
specimen of length Lo to a length 2Lo.We showed that e = 1. Let us now imagine a uniaxial 
compression experiment (see Fig.3(b))  with e = -1. What should the new length be? A 
guess would be L = Lo/2.  However, e = -1 = ( L - Lo)/ Lo   from which we derive that L = 
0! 
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Obviously there is a problem while trying to use the engineering strain definitions for problems 
involving large deformations.  
 
To correct the above problems, we will define the so calle true strain.Consider again uniaxial 
extension that is performed in several small steps from the original length Lo to the final desired 
length L.In each step, we define an incremental true strain de as follows: 

 
where dL is the differential change in length during that step and L is the length at the beginning 
of the step.The total strain would be the sum (integral!) of all the de’s from the initial length Lo 
to the final length L, i.e. 

 
This equation defines the true strain e . N o t e  that for small ∆L = L — Lo and since ln (1 + x) ~ 
x for x << 1, we have: 

 
i.e. at small strains the nominal and true strains are equal. Let us return to the two examples 
examined earlier: 

 In the first example, the sum of e1 + e2 =  ln 1.5 Lo/ Lo + ln 2 Lo/1.5 Lo   =  ln2 Lo/ Lo =  ln2 as 
expected (i.e. the true strain is additive). 

In the second example, note that e = - ln2 =  ln Lo/ Lo, from which we conclude that L =  Lo/2 
as expected. 

One can also define a true shear strain as the tangent of the deformation angle rather than the 
angle itself (but fortunately we will never have to work with large shear strains in this 
course!). 
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Figure 6: Plane strain deformation in the xy plane of a small element of a continuous body. 
The displacements of any point (x, y) are only (continuous) functions of the coordinates x and 
y. 

Two-Dimensional Strain: 

Most of the following analysis is only applicable to small deformation problems.We use the 
notation e for strain to emphasize this assumption and reserve the notation e for large strains. 
To simplify the presentation we only discuss the definition of the two-dimensional strain 
components but an extension to 3D will be apparent. Consider an infinitesimal square section ∆x 
x ∆y of a body in the xy plane. Assume that deformation occurs only on the xy plane and that it is 
only a function of the x and y coordinates. We call later call this deformation state a plane strain 
state in the xy plane. Figure 6 shows the deformed body in terms of the displacements for this 
case of plane strain. 
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Figure 7: Plane strain deformation expressed in terms of the components u and ν and their partial 
derivatives. Here u and ν are the displacements of point O (it will thus be more precise to denote 
them as u0 and ν0, respectively). Similarly the derivatives ∂u/∂x, ∂v/∂y, etc. shown in this figure 
are computed at point O. The displacements u(x,y) and ν(x,y) of any other point (x,y) are 
functions of x and y and can be approximated using a Taylor series expansion around O. The 
sizes ∆x and ∆y of the square section are assumed small. 
Here, we will define the (small) strain components exx and eyy at point O as the relative changes 
of the lengths ∆x and ∆y in the x and y axes, respectively: 

 

For more details consult Fig.7. 
 
Similarly, one can define the shear strain component γxy as follows: 

 
 
 
 
 
  

Extending these ideas to three-dimensions and assuming a displacement field u (x, y , z) ,  ν(x,y,z) 
and w(x,y,z), we define the 9 strain components as follows: 

 
 
Important note: We will not use these expressions often in this course as our strains will be in the 
large deformation regime. For such applications we will use as strain measures an extension of 
our logarithmic strain introduced earlier in one-dimension. For example, the strain exx will be 
defined as exx =  ln(L/L0), where the length L0 was lying in the x-axis before the application of the 
loads. Similarly, we will define eyy and ezz. We will not need to work with large shear strains in 
this course! 

Plane Strain Problems: 

Consider a long prismatic member subject to lateral loading (for example, a cylinder under 
pressure), held between fixed , smooth, rigid planes (see Fig.8).Assume the external forces to 
be functions of the x and y coordinates only. As a consequence, we expect all cross sections 
to experience identical deformation, including those sections near the ends. The frictionless 
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Figure 8: Plane strain in the xy plane. All strain components out of the xy plane are zero, i.e. 
ezz =  γyz = γyz=0.The same definition is applicable to large strains but you should use the 
appropriate (logarithmic) large strain measures. 
 
nature of the end constraint permits x, y deformation, but precludes z displacement; that is, w = 0 
at z = ±L/2.Considerations of symmetry dictate that w must also be zero at midspan. Symmetry 
arguments can again be used to infer that w = 0 at ±L/4, and so on, until every cross section is 
taken into account. For the case described, the strain depends on x and y only:  

 
 
The latter expressions depend on ∂u/∂z and ∂v/∂z vanishing, since w and its derivatives are zero. 
A state of plane strain (on the xy plane) has thus been described wherein each point on the xy 
remains in this plane, following application of the load. 

The Strain Matrix: 

Just as the state of stress is described by a nine-term array, we can define the strain matrix as: 
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Figure 9: Examples of strain states (a) Uniaxial tension for an isotropic material (b) equal 
hydrostatic tension in the three Cartesian axes and (c) shear. 
where: 

 
These nine strain components are needed to define the deformation of a cube.The strain matrix is 
symmetric, e.g. exy =  eyx, etc.Also, we occasionally write ex instead of exx, etc. Note in the 
definition of the strain matrix we used half of the engineering shear strains.This is to allow us to 
use transformation equations from one coordinate system to another as we did for stress (you do 
not need to worry why we introduced the strain matrix like this, but be sure that you know what 
strain you are using, e.g. γxy or exy). 

The test cube can always be rotated into one particular orientation where all the shear strain 
components vanish. These principal strain directions are denoted as 1, 2 and 3, while the 
principal strains are denoted as e1 ,  e 2 ,  e 3 .  

Figure 9(a, b) shows three simple strain states in terms of principal strain components. 

Later in the course, we will see that for an isotropic material (e.g. a linear isotropically elastic 
material), the principal strain directions are the same as the principal stress directions. 

The strain matrix can be written in terms of the principal strain components as follows: 
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Note that there is an important property of the strain component transformation: 

 
     exx + eyy + ezz = e1 + e2 + e3          (19) 
 

In the condition of plane strain examined earlier, one of the principal strain components e1, e2, e3 
is zero, for example the following strain matrix corresponds to plane strain in the plane 12: 

 
 
Similar equations are true for the logarithmic strain. 

Relative Change of Volume in Terms of Strain Components: 

Consider a unit cube (dimensions 1 x 1 x 1 ) )  along the principal strain directions. Under 
loading, the cube will deform to another cube of dimensions (1 + e1) x (1 + e2) x (1 + e3).The 
dilatation, ∆, is defined as the relative change of volume of the cube, i.e. 

 
Note that if the deformation preserves volume (incompressible deformation), then 

e1 + e2 + e3 = exx + eyy + ezz =  0 (23) 

In case of plane strain conditions (e.g. ezz =  0, the above condition can be further simplified 
as exx =  -eyy). 
A final note: Most of the deformations to be examined in this class are large incompressible 
deformations. For such deformations, we will approximate the incompressibility condition as 
follows: 
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or more precisely using true strain increments (de =  dl/l) as follows: 

 
 
The proof of this equation is straightforward (take a cube with sizes l1 x l2 x l3 lying on the 
principal strain axes. Assuming that the volume does not change during deformation, i.e. d(l1 x l2 
x l3) = 0, you can show that dl1/l1 + dl 2/l 2 + dl3/l 3 = 0 which is precisely the equation above. 

Transformation of Strain Components in Plane Strain Conditions: 

Similarly to the transformation equations derived for the stress components, we can derive 
transformation equations for the strain components.Note the similarity between the normal 
strains exx, eyy and ezz and the normal stresses σxx, σyy and σzz as well as the similarity between 
exy(= 1/2γxy), eyz(= 1/2γyz) and exz(=  1/2γxz) with the shear stresses τxy, τyz and τxz. 

Using the notation of Fig.10, we define the strains e x' x', γx' y', e tc .  a s  follows: 

 
Figure 10: Deformation of a small element with sides originally parallel to x' and y' axes. u' and 
ν' are here the displacements of point O in the directions of the axes x' and y', respectively. 
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The final strain transformation equations have the following form: 

 
The principal strain directions (where γx' y' = 0) are found from: 

 
Similarly, the magnitudes of the principal strains are 

 
The maximum shearing strains are found on planes 45° relative to the principal planes and are 
given by 

 
Note that the above transformation equations are only valid for small strain. We will not need the 
transformation equations for the logarithmic strain as we will always try to work on principal 
strain axes!! 

Mohr’s Circle for Small Strain: 

Because we have concluded that the transformation properties of stress and strain are identical, it 
is apparent that a Mohr’s circle for strain may be drawn and that the construction technique does 
not differ from that of Mohr’s circle for stress (see Fig.11). 

• In Mohr’s circle for strain, the normal strains are plotted on the horizontal axis, positive to 
the right. 

• When the shear strain is positive, the point representing the x axis strains is plotted a 
distance γ/2 below the e line, and the y axis points a distance γ/2 above the e line, and vice 
versa when the shear strain is negative. 
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Figure 11: The Mohr circle for plane strain problems. 

 

Figure 12: The Mohr circle for the example problem. 
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Example of a Mohr circle design for plane strain: 

The state of strain at a point on a steel plate is given by exx = 510µ, eyy =  120µ, and γxy = 260µ 
(here µ = 10-6). Let us determine, using Mohr’s circle of strain, 

• the state of strain associated with axes x',y', which make an angle θ = 30° with the axes 
x,y; 

• the principal strains and directions of the principal strain axes; 

• the maximum shear strains and associated normal strains. 

A sketch of Mohr’s circle of strain is shown in Figure 12, constructed by determining the 
position of point C at 1/2(exx + eyy) and A at ( exx,1 /2γxy), from the origin O. Note that 1/2γxy   is 
positive, so point A, representing the x-axis strains, is plotted below the e axis (or B above). 
Carrying out calculations similar to that for Mohr’s circle of stress, the required quantities are 
determined. The radius of the circle is r = (195 + 130 )2 µ =  234µ, and the angle 2θp' =  tan-1 
(130/95) = 33.7°. 
At a position 60° counterclockwise from the x axis lies the x' axis on Mohr’s circle, corre-
sponding to twice the angle on the plate.The angle A'CA1 is 60° - 33.7° = 26 .3°.The strain 
components associated with x'y' are therefore: 

 
The shear strain is taken as negative because the point representing the x axis strains, A' is above 
the e axis. The negative sign indicates that the angle between the element faces x' and y' at the 
origin increases. 
The principal strains, represented by points A1 and B1, on the circle, are found to be 

 
The axes of e1 and e2 are directed at 16.85° and 106.85° from the x axis, respectively. 
Finally, points D and E represent the maximum shear strains. Thus 

 
Observe from the circle that the axes of maximum shear strain make an angle of 45° with respect 
to the principal axes. The normal strains associated with the axes of γmax are equal, represented 
by OC on the circle: 315µ. 


