Spring 2008 Lecture 5
WORK HARDENG

Uniaxial Tension:

Let us consider a uniaxial tensile test. As you will seein Module | of the laboratory, one collects
load F versus deflection datal - 1o during such atest on an Instron machine (Fig. 1, lecture 1).

Here |y denotes the initial length of the specimen andl the instantaneous length when the applied

load is F. The plot of F versus Al =1 - lp is shown in Fig. 1. Using the definition of the
engineering stress S and engineering strain e = 10, one can easily construct the S versus e

diagram that looks identical in nature to the F versus Al diagram (we effectively only need to
change the scale of theF - Al diagram to obtain the S- e diagram). For convenience, the plot S-e

is shown on the same Figure1.

In Figure 1 you should notice al critical regions and points. (i)the elastic region and the
(initial)yield point (yield stressY )defining the transition from the region of elastic (re-
coverable)to elasto-plastic (non-recoverable)deformations, (ii)the region of uniform plastic
deformation, (iii)the region of non-uniform plastic deformation and (iv)the point where necking
is initialized. Note that in the region of uniform plastic deformation, the strengthening effect
offsets the area reduction. After the onset of necking, the deformation becomes localized in the
necking region.

We define the ductility as:

-1
7 elongation at fracture : D« 100 (1)
0
Or using area as
: Ag— A o
% area reduction at fracture : % = 100 (2)

<30
Usually asthe strength increases, ductility decreases.
We define the ultimate stressS, as the engineering stress at the onset of necking (i.e. at the point
of maximum load in atensile test).
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Figure 1: (8)The load versus deflection or engineering stress versus engineering strain diagram
obtained in a uniaxial tensile experiment for a ductile metal (b)To clearly show the transition
from elastic (recoverable) to elastoplastic (non-recoverable)deformations, the diagram on the left



is reproduced for small strainse. When plotting stress versus strain using strain scales for large
deformations, the elastic region is so small that the stress/strain curve in this region looks almost

vertical!
The 0.2% yield strength

Figure 2 defines the 0.2% yield strength using the offset method.

nacz

Figure 2: The 0.2% yield strength is the stress at which a 02% permanent offset occurs. This
definition simplifies the clarification of yield point for cases without a distinct transition from
elastic to plastic regions (e.g. lower and upper yield points for certain steels, etc.).

Figure 3 shows again the engineering stress-engineering strain curve in uniaxial tension and the
state of the specime at the various straining levels.
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Figure 3: Engineering stress/strain diagram showing the region of uniform deformation, the
initiation of necking and the post-uniform deformation up to the point of fracture.



Thetruestresse - true strain e curve

Figure 4 shows the engineering stress/engineering strain diagram designed directly from uniaxial
load/deflection data. As we discussed earlier, engineering strain and engineering stress are not
very appropriate for the regime of large deformations. To transform theS — e diagram to an

s - e diagram, we need to make use of the following identities:

F F A [
g=—=—""l=95_= S(l14e¢), (using lA = lpds (incompressibility) ) (3)
A A A lo

and -
— ) =1In(l+e) (4)

£= Eni =In(l+
lo 0

Both of the above equations are valid only up to the point of necking. Using these equations, the
S—ediagram of Fig. 4 can be transformed to the s - e plot of Fig. 5. Note the big differencesin
between Figures 4 and 5. The s - e diagram does not have a maximum (as theS-e plot has)and
the stress o increases monotonically.
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Figure 4: Engineering stressS versus engineering straine plot obtained directly from uniaxial
load F-deflection Al data.

Using the incompressibility conditionxA = constant, one can write that:

IdA +dlA =0, or ?: _% (5)



True Stress (o) - True Strain (g)
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Figure 5: The true stress-true stain diagram obrained using the plot of Fig. 4 and equations
(3)and (4).
Recall the definition of the true Straine =1Inl /10 Differentiating this equation and together with
equation (5), we arrive at the following very useful expression for the incrementde of the true
strain:

de = ? = —% (6]
It is customary to define the level of deformation using the percentage area reductionr:
A, — A
r=2"""x 100% (7)

Another useful relation is introduced here providing arelation between the true straine and the
%-areareduction r = (Ag- A)/A,, one can show that:
A Ay 1

e =In— =1 =In (8)

A~ "o 4, 1—r

Based on the above very useful equation, one can also derive the area reduction in terms of true
strain:

r=1—¢e" (9)

Loading and Unloadingin a Tensile Test:

Let us consider the uniaxial stress/strain curve of Fig. 6. If we start from no load (point A) and
we load the specimen up to stress s . (point B), the new yield stress becomess .. To understand
this, remove the load after you reach point B. The unloading process (line BC)is elastic. After
you reload specimen C, the material behaves elastically until you reach point B. The original
s - ecurve isfollowed after point B.



[ ]

Figure 6: The a versus e curve shown here emphasizes that the ‘yield stress increases as you
deform the material, e.g. Y as shown here is the yield stress of an initially underformed material,
where ass : isthe ‘yield stress of the material that you loaded in tension up to point B (strain e).
Loading and unloading in atensile test is also used here to define the el astice: (recoverable) and
plastic (permanent) part e of the total straine.

The e =e-+e& Decomposition: Neglecting Elastic Defor mation
Figure 7 is used to define via an unloading process the decomposition of the strain in elastic and
plastic parts:

E=¢e+ & (10)

When interested in large strains (e.g. in metal forming processes), we can neglect the elastic
strain e-and approximate:

€72 g (11)

We will use the above approximation most of the time in the remaining of this course!

€=Eg+Ep
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Figure 7: The e =e=+e decomposition. Hooke’s law is still avalid law but you should notice that
it only relates stresses s and elastic strainse=. We will need a new set of equations to define the
relation of the plastic strains e with the stressess .
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Figure 8: In the large deformation regime, we usually neglect elastic deformations (they are too
small) and thus the unloading curve looks almost avertical lineinthe —large e plot. Also, in
such adiagram the initial elastic region is not visible and the stress curve jumps vertically to the
initial yield stressY.

An example of a hardening law: Power law strain hardening: o= Ke".

To simplify the representation of the hardening behavior, it is customary to curve-fit the
s - e data. The simplest expression that will be used in this course is of the form:

7= HKe", where n = strain hardening exponent & K = strength coefficient (12)
v 3
We Gk o power
law 40 e o-€
o= K En _ da‘\a.

n= 5"(“&‘«\ L\mfiév\i-«j Q.)(EOMM*
K = S‘k‘mv\j)r\n coetficiedk
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Figure9: The power law hardening approximation. The straine shown here isthe total strain
and we assume that e =ep.
Note that the model of equation (12) resultsin a‘line in alogo-loge plane (see Fig. 10):

loge = logk + nloge (13)



Figure 10: Determination of K and n for a power law hardening model by plottingl ogo versus
loge .

Other Examples of Hardening Laws: Rigid-Plastic (no hardening), Linear Hardening.

Figure 11 shows two other typical work hardening material models of interest to this class;
the case of no-hardening (rigid-plastic material model) and the case of linear hardening. The
initial yield stressY for these models (including the power-law model) is shown as well.
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Figure 11: (a)Rigid-plastic (no hardening), (b)linear hardening and (c)power-law hardening
models.



Tensile I nstability

Let us consider a general hardening behaviora(e)(i.e. o being some function of the straire ). At the
onset of necking, the force is maximum:

At the ultimate point: dF=0 (14

Using F = ¢A, the above equation is simplied as follows:

At the ultimate point: d(cA)=0, or odA+dcA=0,or

= (15)

Using equation (6), we can simplify the above equation asfollows:

der

: : aa W=k
At the ultimate point : — =de, aor =a (16)
T

de

The above equation is valid at the ultimate point for any true stress/true strain relation.

Truestrain e at the ultimate point for a power law model: ¢ = Ke"

For the particular case of o= Ke", we computes = K ne " * and equation (16)is simplified as follows:

At the nltimate point :  An E:f_l

= K¢ (17)
The true strain at the ultimate point is thus given as follows:

True gtrain at the ultimate point for a power law material : ey =n

(18)

Theultimate stress S, for a power law model: S, = K(n/e)"

Let F, be the maximum load (at the ultimate point): S, = FJ/Ao. Recall that the ultimate stress is
an engineering stress (force per unit initial area). Using the result of equation (18), we can
compute the true stress o, at the ultimate point as follows:

o, = Kep = Kn" (19)

Using the definition of true stresse=F/ A

F

i

= au Ay = Kn" A, (20)

But from the definition of true strain: e=In A/A; we conclude that:

_4'1.“ = _.-1['5__"*-' = :'1,:.%_‘._” I:E].JI



Combining equations (20)and (21), we finaly derive:

F Kn"4e™
5, =" = et L H[E]”, (e = base of natural logarithms!) (22)

.‘10 .‘10 =

How do you account for the effects of cold-wor king (har dening) that may have been
induced initially (by prior processing)?

Let us consider a metallic specimen that contains no effects of work hardening prior to the
tensile deformation that is currently undergoing through. We use as an examplea = Ke" to
describe the hardening behavior characteristics in thistension test (here called test I, Fig. 12).
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Figure 12: Test I: Uniaxial straining of the workpiece up to straine j,. At the end of this test
after unloading we obtain a specimen with , permanent deformation.

Let us load this specimen up to a strain e, (see Fig. 12). We now remove the load (i.e. we
unload). Thereis an e i, permanent deformation left over in the specimen at the end of this test.

Let us now take the specimen resulted from test | and load it again in tension: What is the
stress/strain relation resulting from this second test? Asit is clear from Fig. 13, the answer is:

T = Kl:Ei_lj + E:In [23)

The key idea here is that the hardening law (e.g.a = Ke ") isamaterial property independent of a
particular test and the resulting yield (or flow)stressa needs to be aways computed using the
total (plastic)strain imposed on the material.
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Figure 13: Test 11: Uniaxial straining of the workpiece that was earlier (test I)deformed up to
strain en. Note that the material obeys the power law in both tests | and I1, but the strain used in
this hardening law is thetotal strain induced in the material.



