Spring 2008 Lecture 6

PLASTIC INCOMPRESSIBILITY, FLOW RULE

AND YIELDING IN PLANE STRAIN &
AXISYMMETRIC PROBLEMS

Plastic incompressibility and Flow Rule

In order to motivate the stress/strain relations in the plastic regime, let us consider again the
tensile test. The specimen is loaded in the 1-direction (see Fig. 1). In addition to straining in
the 1-direction, shrinking will develop in the 2 and 3 directions.
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Figure 1: Thetensiletest.

For isotropic deformations:

€9 = €3 (1)
Note that heree:, e. and es aretrue strains and el astic deformation is neglected as discussed

Experimental evidence shows that plastic deformations are incompressi bleg =0).
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From equations (1) and (2) we conclude that for the tensile test:
F
€3 = €3 = 2 (3)
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Note:If the deformation was elastic, we can write using isotropy and the definition of
Poisson’s ratio:

£a = €3 = —I/eq (4)

Many times students (and authors of some textbooks!) confuse the significance of equation (3)
and think that it is derived from equation (4) usingv = 0.5. The bottom line isthat equation (4) is
not applicable here because we only consider plastic deformations and elasticity is neglected.



Continuing with the uniaxial tensile test (Fig. 1), let us calculate the deviatoric stress
components:
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Recall that the deviatoric stress components are defined by removing the hydrostatic stress from
the normal stress components. Since plastic deformations are incompressible they depend on the
deviatoric stress components and not on the hydrostatic pressure.

Using equations (3) and (5), we can write:

€2 €3 —F €1 €1 (6)
—_ = — = — = — }
/ / o — 2o ‘ ?)
Oy O3 73 ER
€1 F2 €3 . g
— = — = — = constant (1)
."T.-l KTE -"TE

Equation (7) is called theflow rule (the stress/strain relation in the plastic region). The flow rule

plays ‘short of the role that Hooke’s law plays in the elastic region. Both the flow rule (Eg. (7))

and incompressibility condition (Eg. (2)) are valid for multi-dimensional deformations as well
even though the above discussion was restricted to the uniaxial tensile test.

Note: A word on the history dependence of plastic defor mations

In elastic deformations, the stress at agiven level of strain depends only from that level of strain
(e.g.s =Ee) and not how we reached that strain. Thisis not the case in plastic deformations
where the stress at a given strain depends on the history of deformation that brought you from
zero strainto straine .

For this reason, we work with strain incrementsas we deform the material. We cal cul ate the
plastic strain by adding these increments:

£ = de (=)

over the path (history) of deformation

The correct form of the flow ruleto be used from now on is thus the following:

dey  deg  deg : , ,
— = — = — =dA (= material constant) (9)
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and the correct form of the incompressibility condition is:
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We emphasize again that even thoughthe above equations were motivated using the tensile
test, they arevalid for multi-dimensional defor mationsas well.



The flow rule (Equ. (9)) isre-written here in principal stress (strain) axes as follows:

dey = dA rr'i
dey = dA a)
deg = dX\ oq (11)

where dA isa material parameter to be calcul ated.
Recall that the deviatoric (principal) stress components are defined as:
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Each incremental strain increment is proportional to the corresponding deviatoric stress
component (with the constant of proportionality being the same for all components 12,3).
Also we emphasize once more that plastic strain increments depend only through the
deviatoric stress components and not through the hydrostatic stress opm.

Plastic work & Effective Strain for the von-Misesyield criterion

The general form of the incremental work per unit volume for one-dimensional deformationsis:

dw = o de, (13)

We can generalize the above expression in multi-dimensional deformations as follows:
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The above expressions are general and valid for both elastic and plastic deformations. However,

here we are again concerned with negligible elastic deformations and large plastic strains.

Recall that for von-Mises yielding, we already have defined the equivalent stressw as follows:
1
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It would be nice if we can define an equivalent (or effective) strain incrementde We here define

an effective de that iswork conjugate to sw , i.e. such that:
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The idea here is simple; Once you define an equivalent stress (heresw ), then de cannot be
defined arbitrarily but it must obey the work-conjugate relation of Equ. (16).

It can be shown using equations (15), (16) and equations (9), (10) that in terms of principal
strain increments:
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Note: that very often in this course you can simplify the expression on the right hand side of
Equ. (17) using the incompressibility conditionde:+de.+des=0.

Note: Verify using Equ. (3) that for a uniaxial tensile test, Equ. (17) predicts that dé =de:as it
should bel!!

Note: Equation (17) is in terms of principal strain components. We will not need in this course
the expression in terms of strain components in the generalx, y, z coordinate system.

Note: In this course, we will not need to define de for the Tresca criterion. However, just keep
in mind that equation (17) is only good for the von-Mises yield criterion and providesthe
equivalent strain increment that is work conjugate to the von-Mises equivalent stressw .

We will next apply the incompressibility condition, flow rule, equivalent stress & equivaent strain
definitions to a number of examples that will be useful in the analysis of forming processes (such as
forging, extrusion, rolling, etc.). Even though the derivations given here may look of no relevance to
anything, you should trust us that using these equations we will be able later in the course to derive many
practical resultsin forming process analysis and design.

Simplified expressions,sw , d& yield condition & plastic workfor plane strain problems

Assume that 1,2,3 are the principal strain axes and that e.=0 (plane strain on the 1, 3 plane). From
the flow rule (Equ. (11)) using the expressions of Eq. (12) for the deviatoric stress components, we
compute:

Using the above equation, one can simplifysw asfollows:
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Using this important equation, we can now write the von-Mises yield condition for plane strain as
follows:
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Let us now calculate de for this plane strain condition. Using, e.=0 the incompressibility
condition (Eq. (10)) resultsin the following:

dey +dea +deg =0, ——— % deg+0+deg =0, —— — = deg=—de Iffl:l

Substitution of this equation into EqQ. (17) results in the following:
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Using the above expression for de and the von-Mises yield condition, we can compute the
incremental work per unit volume as follows:

0y i
dw = Byprde = Y- [dey| = Ymoe | des] (23)
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The above expression will be very useful in energy based analysis of forming processes later in
this course.

Example of a plane strain drawing process

As an application of the above equations, let us consider the plane strain drawing process shown
inFigure. 2. Wehereassumee =0 andthat X, y, z areprincipal axes. Following
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Figure 2: drawing process.

Because w>> t, we can approximate that e =0 and thus assume plane strain conditions. The
material yields inside the deformation zone (from the entrance to the die to the exit from the die.
We assume that the axesx, y, zremain principal axes everywhere inside the deformation zone,
the results given earlier for general plane strain conditions, we can summarize the following
results for this plane strain drawing process (note that here e. =0, whereas in the general case
examined we hade. =0):

. . _ '\.3
Equvalent Stress: aJyay = ?|'5r: — Oy
- e g 2
Yield Condition @ |o, —o,| = —=}
V'3
: _ . 2,
Equivalent Strain Increment : dé = —|de,|
Vi
R . F 2
Incremental Plastic Waork : dw = %} T§|¢ﬁ3| (24)
v

Let p > O be the pressure at the contact interface between the die and the workpiece. Assuming
that the semi-angle a (Fig. 2) of the dieis very small (i.e. small reductions), we can consider that
the axisy is approximately normal to the die/workpiece contact interface and approximate that:
oy = -p. Noting that o, > 0, we can re-write equations (24(a, b)) asfollows:



Equivalent Stress : gy = —I(0. 4+ p)
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Yield Condition : o, +p = —=Y (

Note that equations (24) and (25) are valid everywhere inside the deformation zone.

An example of a plane strain forging process

Let us condider the plane strain forging process shown in Fig. 3. The workpiece is constrained in
direction 2 ( e.=0 ) and in addition the surface with normal axis 3 is free(ss = 0). Using our
earlier results for plane strain, we can summarize the following equations for forging processes.
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Figure 3:A plane strain compression The workpiece is constrained in direction 2 and it is free to expand ir
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Stress Constraint © oy = —
. . _ V3
Equivalent Stress : aya = ?|01|
e 2
Yield Condition : |oy| = —=Y¥
v 3
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Equivalent Strain Increment : de = f_3|n’f1|
Ve
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Incremental Plastic Work : dw = Y —|de| (26)
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Simplified expression for sw , dé yield condition and plastic work for axially symmetric problems

An axisymmetric body is assumed to have symmetry around the-axis and the deformation/stresses have
no dependence on the coordinated. In this course we assume that ther ,0, z axes are principal axes (of
stress or strain). So all shear stresses shown in Fig. 4 are zero. Typica cases that we will approximate as
axisymmetric include the deformation of cylinders with circular section, extrusion/drawing of rods, etc.



Figure 4:Stress componentsin apolar coordinate system. In an axisymmetric problem, we assume that
the axesr, 6, zare principal and that there is no 6 dependence of the stresses or strains.

During axisymmetric deformations, the following conditions are true:
£ = £
T, = 0Og (27)

These equations are not general, but we will accept them here in order to allow ourselves to work
with circular geometry, etc. Let ussimplifysw for axisymmetric bodies:
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and thus the yield condition for axisymmetric deformations can be written as follows:
Yield Condition For Axisymmetric Bodies:

oy — .| =Y (29)
Using Equ. (27(a)) and the incompressibility conditionde ; + de g + de ; = 0, we can see that:

de,
2

de, = deg = —

(30)



The above equation can be used to simplify the expression forde asfollows:
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In summary, for axisymmetric deformations the following useful results are obtained:

Stress Constraint : o, =
Strain Constraint : e, = ¢g
Equivalent Stress : ayy = |0, — o,
Yield Condition : |o, —a,|] = Y
Equivalent Strain Increment : de = |de|
[ncremental Plastic Work : dw = Y|de, | (32)

Conditions for continuous (sustained) vielding:

All forms of yield conditions we have seen up to now are for initiation of yielding (yield stress=
Y). What do we suppose to do for continuing straining (work-hardening). To make things
simple, let us consider power-law hardening(c = Ke ") and concentrate on the von-Mises yield
condition. To define the condition between the stress components in order to sustain yielding as
the material hardens, we proceed as follows:

» Using the effective straine we calculate the yield stress (flow stress) of the material as:
Ke"

» Thevon-Misescriterion is now modified to take the form:

ﬁ'g_-‘ﬂf = I'L--.En ( 33 :I

i.e. a each level of e, the effective von-Mises stress is equal to the current yield stress which is
calculated based on the uniaxial hardening law but using as strain the equivalent straire .

As such all expressions given earlier for the yield condition or the work expressions are
applicable for sustained yielding by using the current yield stres¢K e ") instead of .

As an example, for the case of plane drawing of Fig. 2 with a power law hardening material
model and an initial thicknesst,, you should be able to easily show that at an arbitrary location
inside the deformation zone where the thickness ist, the equivalent strain increment, yield stress,
yield condition and incremental work per unit volume can be written as follows:



Equivalent Strain Increment : de = f_3|szy|
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Yield Stress : VYV = K(—=ln—)"
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Yield Condition : o +p = —=K( ____.a’.n—c')”'

Incremental Plastic Work : dw = Y —]de,| (34)
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In these equations, we assume that the stresses/strains, yield stress, etc. are only functions of x
(i.e. the same in each cross-section of the workpiece) and that the material is yielding
everywhere within the deformation zone. The restrictions of small reductions, small die semi-
angles, etc. discussed earlier are applicable here aswell.



