Spring 2008 Lecture 4
YIELD CRITEA

Yield criteria

Recall that we say that the material yields when it exhibits an irreversible straining which is
sustained once a certain level of the stress distribution is reached.

A yield criterion indicates for which combination of stress components transition from elastic
(recoverable) to plastic (permanent) deformations occurs.

We will start our discussion with initial yielding and then proceed to discuss how material
yielding is sustained. In one-dimension (Fig. 1(a)) yielding occurs when the uniaxial stress
reaches the value of the yield stressY in tension, i.e. at o = Y . When does ‘yielding occurs in
multi-axial stress states? (Fig. 1(b))? The answer is given with phenomenological theories called
‘yield criterid. Instead of presenting the requirements and constraints for a general form of a
yield criterion, we will here only examine the two most important yield criteria for isotropic
materials.
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Figure 1: (a) To define yielding in one-dimensional stress states, we compare the
uniax-ial stresso with the yield stress in tensionY . (b) When does yielding occurs in
multi-dimensions?

The Trescacriterion or the Maximum shear stress criterion

According to Tresca, in the general multi-dimensional stress state, yielding occurs when:

Tmax = /i,  where x is the vield stress in shear (1)
Recall that:

Tmax — Tmin

Tmax = - a9 [ 2:'

“

where s max ands min are the maximum and minimum principal stresses, respectively. The yield
stress K can be understood as the shear stress level t in a pure shear test a which transition from
recoverable to non-recoverable shear strainsg occurs. Think of the diagramt versus g obtained
in a pure shear test the same way you think of the diagrams versus eintension. Theyield stress
K in shear can be defined the same wayY was defined in atensile test.



Theyield stressk in shear is not independent of the yield stressY in uniaxial tension. To compute
their relation, apply the Tresca criterion to uniaxial tension. For thiscase;s 1t Oands.=s:=0.
So we can write:

3

Tmax — Tmin T — 0 7

= = = — =K |

‘max — 9 — 9 9

from which we conclude that in uniaxial tension yielding occurswhery 1 = 2K, i.e.

v
For the Tresca criterion : K= (4)

Using the above expression, we can summarize the Trescayield criterion as follows:

Tmax — Tmin

N Y
In a general stress state vielding oceurs when | Tpae = — T =R = (5)

Figure 2 shows a graphical representation of this criterion for the case of plane stresss.=0). To
verify the form of this diagram the only thing you need to account carefully isthe values ok max
ands min ineachregion of thes:- ss1 plane.
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Figure 2: Plot of the Tresca yield locus for the case of plane stress (o> = 0). In each of the six
sectors of this diagram you need to find the omx and orin from the principal stress componentsoy,



oz = 0 (plane stress) and os.
Examples of the application of the Tresca criterion

Example 1: Equi-biaxial tensionoy = 0o = cand o3 = 0. (Fig. 3)

Eq TBIAXIAL TeENgION

Figure 3: Equi-biaxial tension:o1 = oo = cand 63=0.
The principal stresses are:
Omax — 01 = 0 [G]'

Tmin = 03 = [ [?]'

a—0 Y
2
from which we conclude that yielding in equi-biaxial tension occurs wherr =Y.

Example 2: Hydrostatic pressurees 1= 6, = 63=-p (Fig. 4)
The principal stresses are:

Tmax = —FP ['!;]'j

Tmin — —F (10)
_(=r)=(=p) Y .

Tmax = B —O*E [11]'

So since Tax ' Y/2 regardless of the value of p, we conclude that yielding can never occur
in apurely hydrostatic stress state (Important note: In reality this and other yield criteria are
designed to start with such that a hydrostatic stress state leads to non-yielding as it is
observed in experiments!).



HYDROSTATIC PRESSURE

Figure 4: Hydrostatic pressure, 1= 62 = 03 = -p.

Example 3: Thin pressurized tube with end caps (r/t > 10) (Fig. 5)
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Figure 5: Thin wall pressurized tube under pressurep with the principal directions denoted as1,
=0,2,=zand 3, =r intermsof thef, z,r coordinate system seen earlier in the course.
The principal stresses are:

o =0 (12)
ap = % []_El]l
o= (14)

Using these equations we conclude that:

m :
Tmax = T8 = }T [15)

Tmin = 0y = 0 [101'

So substitution to the Tresca criterion gives:



r_0 Y o
Tmax — B = E (17)
from which we conclude that yielding occursforpr/t =Y or for p=tY/r
Example 4: Pure shear: Pureshear state:61=-6>=1, 635=0 (Figure®6)
PURE SHEAR
X
{ ;\‘1\.\‘
\ < T
9 k“mi . ‘,f"w
\‘NT\H 1! lll!
~/
oy =T
Oq = —T
Ty = 1::'
Fiqure 6: Pure shear stae
Substitution in to Tresca criteriagives:
T—(—7) R Y -
Trnax = T = 7. so vielding occurs when : 7= B) (18]

which we already have seen earlier in the form ofK=Y/2
2

Example 5: General 3D case

Let us consider that a metal with a yield stress of 280 MPa is subjected to a stress state with
principal stresses of 300 MPa, 200 MPa and 50 MPa. Will the metal yield based on the Tresca
yield criterion?

Using the given stress values, we conclude that:

omx = 300MPa (19)

So substitution to the Tresca criterion gives:

i.e. the metal will not yield.



Example 6: Yielding under general plane stress conditions (Fig. 7)

For the plane stress state of Figure 7, let usfind the yield stressY if we know that the material is
yielding.
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Figure 7: A plane stress state.

We construct aMohr circle to evaluate the principal stresses on the plane. From the construct
shown in Fig. 8 we conclude that:

[ 100 — 70 2
R — v (——) +50° =52 MPa (22)

e

c = = ; 7Y — 85 MPa (23)




From the above, we conclude that: o, = 137 MPaand o, = 33 MPa. This together with oz =0
(plane stress) gives that: oma= 137 Mpaand arin = 0. Substitution into the Tresca criterion results
in the following:

137 —0 Y
Tmax = — 5 — = 24
5 5 (24)
from which we conclude that Y = 137 MPa
T
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Figure 8: A Mohr circle construction for the plane stress case of the Fig. 7 above.
Thevon-Misesyield criterion

Define an equivalent stresssw asfollows:

1 - : — |
avM = 71.!;(%71 —a2)2 + (0 —a3)? + (03 — )2 (25)

v
(in terms of principal stress components) or as
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TVM = —
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(interms of the stress componentsin thex, y, z coordinate system).

Note that the two equations above are equivalent (i.e. the right hand side of Equation (26) is
invariant - does not change as we ‘rotate’ the stress components from one coordinate system to
another).

According to the von-Mises yield criterion, in a general multi-dimensional stress state, yielding
occurs when the von-Mises equivalent stress becomes equal to the yield stressY in tension, i.e.
yield occurs when:

Von - Misesyield criterion : Yieldingoccurswhen: sw=Y 27)
As expected (and by an obvious design of the von-Mises criterion), for uniaxial tension¢1: 0,
oz = a3 = 0) the von-Mises yield criterion predicts that yielding occurs when:

| -

1.,.-"'[;71 — 024+ (0-02+0—-m)f=a =Y (28)

Ay

T
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or when

o1=Y (29)

Note: The distortional energy calculated for ‘elastic deformations was given as follows:

) 1 g - PP ) , .
W, = E[LJH — Oyy)” Oy — 022)" 4+ (022 — Oe)” + 6(7, +7,, + ] (30)

from which using the earlier given expressions fosw , we can write:

1
6O
It now becomes clear that one can state the von-Mises yield criterion in an equivalent form as
follows:

Wa = 5’%— M. O v = 1“ G Wy (31)

Y2 (32)

Equivalent form of von — Mises criterion : Yielding occurs when: Wy = G
T

This form of the von-Mises yield criterion justifies the alternative name of the von-Mises
criterion as the ‘Maximum distortion energy yield criterion. This form of interpretation will not

be further used in this course as the presentation using an equivalent stress is much easier to
interpret and use in the calculations.

Examples of the application of the von-Misesyield criterion
Example 1. Equi-biaxial tensiono; = 02 = o and 63 = 0 (Fig. 3)

Substitution in the expression for sw gives:

TyM = Tﬁ\’;‘[ﬁl —09)2 4 (op —03)2 4+ (03 — 01 )2 = —3‘[rr —c)Pl2+(c=024+0—-a2=0c
V& W<



So for this case yielding occurs wheno = Y.

Example 2: Hydrostatic pressure: 61 = o = 03 = -p (Fig. 4)

Substitution in the expression for sw gives:

ovm = —=\/ (01— 02)2 + (02 — 032 + (03 — 01)?

|~
(|

= —=(=p—(=P)2+ (=p— (=p) 2+ (—p— ()2 =0#Y (34)
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So as it was the case with the Tresca criterion, yiel ding does not occur in the von-Mises criterion
for the case of hydrostatic pressure.

Example 3: Thin pressurized tube with end caps (/t > 10) (Fig. 5)

Substitution in the expression for sw of o; = 0, oy = pr/t and o, = pr/2t gives the following:

avM = Ta\,-'f[_ﬂr —09)? + (09 — 02)2 + (0, — 0, )?
Voo
I P, prpr. pr ) y‘ﬁpr .
= —. /{0 =22 L L )2 L NE = L 3n
V2V [' t )+ t 2t )"+ 2t ) 2 1 (39)

Vapr . 2 o
Example 4: Pure shear: o1 =-0» = rand o3 = 0 (Fig. 6)
Substitution in the expression for sw of o1 = 7, 0 = -rand o3 = 0 gives the following:
~ 1y 5 E— -
M= Sy (1 —0o2)" + (02 —03)* + (03 — 01)°
v
1 ; . = = = .
= Tﬁ’v’f("* — (=) 4+ (=7 =02+ (0—7)2 =37 (37)
v

So in pure shear, yielding occurs according to the von-Mises criterion when:



— Y
Vvir=Y, o t=k=— (38)
V3
Note that for the Tresca criterion we computed thatK=Y/2!!
Thevon-Misescriterion for the general plane stress state: 6, =0
Let us apply the von-Mises criterion in the general case of plane stress conditions.o, = 0.
Substitution into the expression for sw gives the following:
avM = 1 'Ilf(ﬂ'l — )2 4 (o2 — 03)% + (03 — 01)?
NeA
1
= E\-’I(JI — 024+ (0—o3)% + (3 — o) = v"lfcr% — 773 + G’% (39)
Thus according to the von-Mises yield criterion, yielding occurs when:
For plane stress (o2 = 0) vielding occurs when : of — o103 + 05 = ¥ (40)
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Figure 9: The Trescaand von-Misesyield loci for the same value ofY showing certain loading
paths (i.e. for varyinga = s 3/s1 ).



