Spring 2008
Lecture 2
HY DROSTATIC-DEVIATORIC STRESS
DECOMPOSITION AND
THE CONCEPT OF STRAIN

Hydrostatic and deviatoric stress components:

Let us consider the stress matrix representation[a] at a point in the body:
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Itis convenient and useful to split the stress matrix into two parts, one called the spherical or the
hydrostatic part and the other one the deviatoric part.

At first, the hydrostatic stress ay, is defined as follows:
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We define as hydrostati c stress state, the fol lowing:
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The name hydrostatic is used to emphasi ze the similar nature of the above state with the one
applied on asolid cube inside aliquid (seeFig.1).
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The deviatoric stress state (matrix) [a@'] is now defined as the difference of the stress matrix[a]
(equ.(1)) from the hystrostatic stress matrix given by equation (3) ie.
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Figure 1: A hydrostatic stress state with p =—a,
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Figure 2: The decomposition of stress in hydrostatic and deviatoric parts.
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In terms of the principal stresses, the principal deviatoric stress components can be written as
follows:
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A graphical representation of the above decomposition of the stress matrix is shown in Fig.2.We
will later see that the hydrostatic stress part is related to the change of volume of a material
during deformation, while the deviatoric part is responsible for the induced distortion.

Uniaxia Strain:
Consider abar of lengthL..By applying forces as shown in Fig.3(a), we extend the length

of the bar by an amount AL =L - L.
We define the nominal or engineering straire as follows (see Fig.3).
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Figure 3: Definition of the uniaxial strain (a) Tensile and (b) Compressivel, isthe original
length and AL the Iength change after the load application.

In addition to the above normal nominal strain, one can define the engineering shear strairy as
the change of angle as shown in Fig.4.For small angle change, we can write:
£l
= - (7]

Figure 5 shows both the deformed and undeformed configurations of an infinitesimal cube under
uniaxial tension and pure shear.

Both of the above definitions are applicable only for small deformations (e.g. equation (6) is
applicable for stretches less than 2 % in tension).Why is that?
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Figure 5: Infinitesimal element subjected to: (a) uniaxial tension with the resulting deformation
and (b) pure shear with the resulting deformation.

Let us use two examples to demonstrate why the above definitions are not appropriate for
large deformations Let us consider a tensile experiment in which a specimen of lengthL,
is elongated to length 2L,.Using equ.(6), the predicted engineering strain is e= (2L, -
Lo)/ Lo=1 . Let us now assume that the above extension from L, to 2L, is achieved in two
stages; from L, to 1.5L, and from 1.5L, to 2L .1 n thefirst stage, the engineering strain is
e= (1.5 L, - Lo)/ Lo=0.5 while in the second stage &= (2 L, -1.5 L)/ L,=0.333. One expects
that, e; + e should be equal to e = 1.Unfortunately, e; + e, = 0.833 (This implies that the
engineering strain is_not additive.

As a second example, let us consider again the tension experiment that elongates a
specimen of lengthL, to alength 2L,.We showed that e = 1. Let us now imagine a uniaxial
compression experiment (see Fig.3(b)) withe = -1. What should the new length be? A
guesswould beL =Ly/2. However,e=-1=(L-Ly)/ L, fromwhich we derivethat L =
0]
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Obvioudly there is a problem while trying to use the engineering strain definitions for problems
involving large deformations.

To correct the above problems, we will define the so calle true strainConsider again uniaxial
extension that is performed in several smallsteps from the original lengthL, to the final desired
length L.In each step, we define an incremental true strainde as fol lows:
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where dL isthe differential change in length during that step andL is the length at the beginning
of the step.The total strain would be the sum (integral!) of all thede’s from the initial lengthL,

tothefinal lengthL, i.e.
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This equation definesthetrue strain e. N ot e that for small AL =L —L, and sinceln (1 + x) ~
x for x << 1, we have:
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i.e. at small strains the nominal and true strains are equal. Let us return to the two examples
examined earlier:

In the first example, thesumofe; + &= IN15Ly/ Lo +IN2L/15L, = IN2LyJ/L,=IN2as
expected (i.e. the true strain is additive).

In the second example, note that e = - IN2 = [N L4/ Lo, from which we conclude thatL = Lo/2
as expected.

One can also define a true shear strain as the tangent of the deformation angle rather than the
angle itself (but fortunately we will never have to work with large shear strains in this
course!).
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Figure 6: Plane strain deformation in the xy plane of a small element of a continuous body.
The displacements of any point(x, y) are only (continuous) functions of the coordinatesx and

Y.

Two-Dimensiona Strain:

Most of the following analysis is only applicable to small deformation problems.We use the
notation e for strain to emphasi ze this assumption and reserve the notation e for large strains.

To smplify the presentation we only discuss the definition of the two-dimensional strain
components but an extension to 3D will be apparent. Consider an infinitessimal square sectiomx
X Ay of abody in thexy plane. Assume that deformation occurs only on thexy plane and that it is
only afunction of thex and y coordinates. We call later call this deformation state a plane strain
state in the xy plane. Figure 6 shows the deformed body in terms of the displacements for this
case of plane strain.




Figure 7: Plane strain deformation expressed in terms of the componentsu and v and their partial
derivatives. Hereu and v are the displacements of point O (it will thus be more precise to denote
them as up and w, respectively). Similarly the derivativesou/ox, ovldy, etc. shown in this figure
are computed at point O. The displacements u(x,y) and v(x,y) of any other point (x,y) are
functions of x and y and can be approximated using a Taylor series expansion aroundO. The
sizes Ax and Ay of the sguare section are assumed small.

Here, we will define the (small) strain componentse and e,y at point O as the relative changes
of the lengths Ax and Ay in the x and y axes, respectively:
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For more details consult Fig.7.

Similarly, one can define the shear strain componenty, as follows:
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Extending these ideas to three-dimensions and assuming a displacement fieldi(x,y,z), WXx\y,2)
and w(x,y,2), we define the 9 strain components as follows:
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Important note: We will not use these expressions often in this course as our strainswill be in the
large deformation regime. For such applications we will use as strain measures an extension of
our logarithmic strain introduced earlier in one-dimension. For example, the strainey will be
defined asew = In(L/Lg), where the length Lo was lying in thex-axis before the application of the

loads. Similarly, we will defineg,y and e,. We will not need to work with large shear strains in
this course!

Plane Strain Problems:

Consider a long prismatic member subject to lateral loading (for example, a cylinder under
pressure), held between fixed , smooth, rigid planes (see Fig.8).Assume the external forces to
be functions of the x and y coordinates only. As a consequence, we expect all cross sections
to experience identical deformation, including those sections near the ends. The frictionless
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Figure 8: Plane strain in the xy plane. All strain components out of the xy plane are zero, i.e.
€z = %z = %7~0.The same definition is applicable to large strains but you should use the
appropriate (logarithmic) large strain measures.

nature of the end constraint permitsx, y deformation, but precludesz displacement; that is,w =0
at z = +1./2.Considerations of symmetry dictate that w must also be zero at midspan. Symmetry
arguments can again be used to infer that w = 0 at +L/4, and so on, until every cross section is
taken into account. For the case described, the strain depends on x and y only:
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The latter expressions depend on Au/dzand ovloz vanishing, sincew and its derivatives are zero.

A state of plane strain (on the xy plane) has thus been described wherein each point on the xy
remains in this plane, following application of the load.

The Strain Matrix:

Just as the state of stressis described by a nine-term array, we can define the strain matrixas:

. 1., 1.,
€rr 7Try 3 frz Epy  Epy Cra
el =1 1. 1_ = . ) 16
€] 2 Jur  Fyy 3wz Cyr Eyy Eyz (16)
1. 1. .
3T2x 37zy Exa Exp Ezy Ezz



HynrosTATIC TENSION
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Figure 9: Examples of strain states (@) Uniaxial tension for an isotropic material (b) equal
hydrostatic tension in the three Cartesian axes and (c) shear.
where:
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These nine strain components are needed to define the deformation of a cube. The strain matrix is
symmetric, e.g. 6y = €y, etc.Also, we occasionally write e, instead of e, etc. Note in the
definition of the strain matrix we used half of the engineering shear strains.Thisisto allow usto
use transformation equations from one coordinate system to another as we did for stress (you do
not need to worry why we introduced the strain matrix like this, but be sure that you know what
strain you are using, €.g. %y Or &y).

Ery =

b | =

The test cube can always be rotated into one particular orientation where all the shear strain
components vanish. These principal strain directions are denoted as 1, 2 and 3, while the
principal strains are denoted ase1, e;, €s.

Figure 9(a, b) showsthree simple strain states in terms of principal strain components.

Later in the course, we will see that for an isotropic material (e.g. a linear isotropically elastic
material), the principal strain directions are the same as the principal stress directions.

The strain matrix can be written in terms of the principal strain components as follows:



Note that there is an important property of the strain component transformation:

BxtQytez=6 + e+ (29

In the condition of plane strain examined earlier, one of the principal strain component®, e, €3
is zero, for example the following strain matrix corresponds to plane strain in the plane 12:

e = “ 4 “ [2“]

Similar equations are true for the logarithmic strain.
Relative Change of Volumein Terms of Strain Components.

Consider a unit cube (dimensions 1x1x1)) aong the principal strain directions. Under
loading, the cube will deform to another cube of dimensions (1 +e;) x (1 + &) x (1 + €3).The
dilatation, A, is defined as the relative change of volume of the cube, i.e.

AV _ (14+e1){l4e)(14+eg)—1
Vo 1x1x1

AV
,-":\:T:f'l+('2+E'3:f'rr-l—f'yy—l—f':: (22)

A=

~eptegtey (21)

or

Notethat if the deformation preserves volume (incompressible deformation), then

ete+tes=extgyt+ey=0 (23

In case of plane strain conditions (e.g.e, = 0, the above condition can be further simplified

as e = -€y).

A fina note: Most of the deformations to be examined in this class are large incompressible
deformations. For such deformations, we will approximate the incompressibility condition as
follows:
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€1+ et e3 =€ + ey + 6 =10 (24)
or more precisely using true strain increments(de = dl/I) as follows:

dey + deg + deg = degy + deyy +de,, =0 (25)

The proof of this equation is straightforward (take a cube with sizesl1 x I, * 13 lying on the
principal strain axes. Assuming that the volume does not change during deformation, i.ed(l1 x I
X 13) = 0, you can show that dl1/I; + dI 2/l , + dl3/l 3= 0 which is precisely the equation above.

Transformation of Strain Components in Plane Strain Conditions:

Similarly to the transformation equations derived for the stress components, we can derive
transformation equations for the strain components.Note the similarity between the normal
strains e, €,y and e, and the normal stresses oy, ayy and o, as well as the similarity between
8y(=""%), 8A=""%) and e(= "*1x;) with the shear stresses zy, 5, and .

Using the notation of Fig.10, we define the strainsex x, %y, €tc. as follows:
A

A
2 6N

\
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Figure 10: Deformation of asmall element with sides originally parallel t' and y' axes. u' and
v are here the displacements of point O in the directions of the axesx' and y', respectively.
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Thefinal strain transformation equations have the following form:

e + & [ — & ¥ . i}
= I W T W w0826 4+ 5in2e
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d:?_-[--"y-" (xi'_'[' - E‘yy . ':?'I-y . . Ol
= ——= sin2¢# + cos26 (27)
2 2 '
The principal strain directions (wherey, y» = 0) are found from:
tan26, = — = (28)
E€rr — Cyy

Similarly, the magnitudes of the principal strainsare

e + & / oz — € \ 2 o\ 2 _
erp=— T”’“ * V (—{ 2 Eyy) + (Ty) (29)

<

The maximum shearing strains are found on planes 45 relative to the principal planes and are
given by

~ = +2 I|'I Epr — Sy 2 i Ty 2 — 4 (e ‘ 30
fmax — '—'\Vf - 5 5 = (e1 —ea) (3 )

) )

Note that the above transformation equations are only valid for small strain. We will not need the
transformation equations for the logarithmic strain as we will always try to work on principal
strain axes!!

Mohr’s Circle for Small Strain:

Because we have concluded that the transformation properties of stress and strain are identical, it
is apparent that a Mohr ’s circle for strain may be drawn and that the construction technique does
not differ from that of Mohr’s circle for stress (see Fig.11).

* In Mohr’scircle for strain, the normal strains are plotted on the horizontal axis, positive to
theright.

* When the shear strain is positive, the point representing thex axis strains is plotted a
distance ’/, below the e line, and they axis points a distance’/, above the e line, and vice
versawhen the shear strain is negative.
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Figure 11: The Mohr circle for plane strain problems.
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Figure 12: The Mohr circle for the example problem.
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Example of aMohr circle design for plane strain:

The state of strain at a point on a steel plate is given by e = 510y, e,y = 120y, and .y = 260
(herep = 10-°). Let us determine, using Mohr’s circle of strain,

* the state of strain associated with axes x',y', which make an angle 6 = 30° with the axes
XY,

» the principal strains and directions of the principal strain axes;

» the maximum shear strains and associated normal strains.

A sketch of Mohr’s circle of strain is shown in Figure 12, constructed by determining the
position of point C at 1/2(e« + g,) and A at (exx,1/2yy), from the origin O. Note that 1/2yy is
positive, so point A, representing the x-axis strains, is plotted below the e axis (or B above).

Carrying out calculations ssimilar to that for Mohr's circle of stress, the required quantities are
determined. The radius of the circle isr = (195 + 130 )? p = 234y, and the angle 26,' = tan™

(130/95) = 33.7°.

At a position 60° counterclockwise from the x axis lies the x' axis on Mohr’s circle, corre-

sponding to twice the angle on the plate.The angle A'CA; is 60° - 33.7° = 26.3°.The dtrain

components associated with X'y are therefore:

Eprer = 3150 4+ 234 cos 26.3" = 525

ey = 1500 — 234 cos 26.3° = 1054

Yoy = —2 (234 pp 51n26.37) = =207 (31)
The shear strain is taken as negative because the point representing thex axis strains, A" is above
the e axis. The negative sign indicates that the angle between the element faces<' and y' at the

origin increases.
The principal strains, represented by pointsAl and B1, on the circle, are found to be

ey = 315p + 234 = 549
eg = 315p — 234 = 8lpu (32)

The axes of e; and e, are directed at 16.85° and 106.85° from the x axis, respectively.
Finally, pointsD and E represent the maximum shear strains. Thus

Vmax = 465 (33)

Observe from the circle that the axes of maximum shear strain make an angle of 45 with respect
to the principal axes. The normal strains associated with the axes of yma are equal, represented
by OC on the circle: 315y.

14



