
Yield and Plastic Flow 

Introduction 

In our overview of the tensile stress-strain curve in Module 4, we described yield as a 
permanent molecular rearrangement that begins at a sufficiently high stress, denoted σY in 
Fig. 1. The yielding process is very material-dependent, being related directly to molecular 
mobility. It is often possible to control the yielding process by optimizing the materials 
processing in a way that influences mobility. General purpose polystyrene, for instance, is a 
weak and brittle plastic often credited with giving plastics a reputation for shoddiness that 
plagued the industry for years. This occurs because polystyrene at room temperature has so 
little molecular mobility that it experiences brittle fracture at stresses less than those needed 
to induce yield with its associated ductile flow. But when that same material is blended with 
rubber particles of suitable size and composition, it becomes so tough that it is used for 
batting helmets and ultra-durable children’s toys. This magic is done by control of the 
yielding process. Yield control to balance strength against toughness is one of the most 
important aspects of materials engineering for structural applications, and all engineers 
should be aware of the possibilities. 

 

Figure 1: Yield stress σY as determined by the 0.2% offset method. 

Another important reason for understanding yield is more prosaic: if the material is not 
allowed to yield, it is not likely to fail. This is not true of brittle materials such as ceramics 
that fracture before they yield, but in most of the tougher structural materials no damage 
occurs before yield. It is common design practice to size the structure so as to keep the 
stresses in the elastic range, short of yield by a suitable safety factor. We therefore need to be 
able to predict 
when yielding will occur in general multidimensional stress states, given an 
experimental value of Yσ . 

Fracture is driven by normal stresses, acting to separate one atomic plane from another. 
Yield, conversely, is driven by shearing stresses, sliding one plane along another. These two 
distinct mechanisms are illustrated n Fig. 2. Of course, bonds must be broken during the 
sliding associated with yield, but unlike in fracture are allowed to reform in new positions. 
This process can generate substantial change in the material, even leading eventually to 
fracture (as in bending a metal rod back and forth repeatedly to break it). The “plastic” 
deformation that underlies yielding is essentially a viscous flow process, and follows kinetic 
laws quite similar to liquids. Like flow in liquids, plastic flow usually takes place without 
change in volume, corresponding to Poisson’s ratio v = 1/2. 



 
 

Figure 2: Cracking is caused by normal stresses (a), sliding is caused by shear stresses (b). 

Multiaxial stress states  

 

The yield stress aY is usually determined in a tensile test, where a single uniaxial stress acts. 
However, the engineer must be able to predict when yield will occur in more complicated 
real-life situations involving multiaxial stresses. This is done by use of a yield criterion, an 
observation derived from experimental evidence as to just what it is about the stress state that 
causes yield. One of the simplest of these criteria, known as the maximum shear stress or 
Tresca criterion, states that yield occurs when the maximum shear stress reaches a critical 
value Tmax =  k. The numerical value of k for a given material could be determined directly in a 
pure-shear test, such as torsion of a circular shaft, but it can also be found indirectly from the 
tension test as well. As shown in Fig. 3, Mohr’s circle shows that the maximum shear stress 
acts on a plane 45° away from the tensile axis, and is half the tensile stress in magnitude; then 
k =  Yσ /2. 

In cases of plane stress, Mohr’s circle gives the maximum shear stress in that plane as 
half the difference of the principal stresses: 

 

Figure 3: Mohr’s circle construction for yield in uniaxial tension. 

Example 1 
Using σp1 = σθ = pr/b and σp2 =  σz = pr/2b in Eqn. 1, the shear stress in a cylindrical pressure 
vessel with closed ends is 

 
 
 



where the θz subscript indicates a shear stress in a plane tangential to the vessel wall. Based 
on this, we might expect the pressure vessel to yield when 

 
which would occur at a pressure of 

 
However, this analysis is in error, as can be seen by drawing Mohr’s circles not only for the 
θz plane but for the θr and rz planes as well as shown in Fig. 4. 
 

 

Figure 4: Principal stresses and Mohr’s circle for closed-end pressure vessel 
 
The shear stresses in the θr plane are seen to be twice those in the θz plane, since in the θr 
plane the second principal stress is zero: 

 
 
Yield will therefore occur in the θr plane at a pressure of bσY/r, half the value needed to cause 
yield in the θz plane. Failing to consider the shear stresses acting in this third direction would 
lead to a seriously under designed vessel. 
Situations similar to this example occur in plane stress whenever the principal stresses in the 
xy plane are of the same sign (both tensile or both compressive). The maximum shear stress, 
w hich controls yield, is half the difference between the principal stresses; if they are both of 
the same sign, an even larger shear stress will occur on the perpendicular plane containing the 
larger of the principal stresses in the xy plane. 
 

 
Figure 5: Yield locus for the maximum-shear stress criterion 

 
 
 



EXAMPLE 2 

 

Figure 6: (a) Circular shaft subjected to simultaneous twisting and tension. (b) Mohr’s circle 
construction. 

A circular shaft is subjected to a torque of half that needed to cause yielding as shown in Fig. 6; 
we now ask what tensile stress could be applied simultaneously without causing yield.A 
Mohr’s circle is drawn with shear stress τ = k/2 and unknown tensile stress σ. Using the 
Tresca maximum-shear yield criterion, yield will occur when σ is such that 

 

The Tresca criterion is convenient to use in practice, but a somewhat better fit to experimental data can 
often be obtained from the “von Mises” criterion, in which the driving force for yield is the strain 
energy associated with the deviatoric components of stress. The von Mises stress (also called the 
equivalent or effective stress) is defined as 

 
 
In terms of the principal stresses this is 

 
 
Where the stress differences in parentheses are proportional to the maximum shear stresses on 
the three principal planes.   (Since the quantities are squared, the order of stresses inside the 
parentheses is unimportant.) The Mises stress can also be written in compact form in terms of 
the second invariant of the deviatoric stress tensor Σij: 
 



 
 
It can be shown that this is proportional to the total distortional strain energy in the material, 
and also to the shear stress τoct on the “octahedral” plane oriented equally to the 1-2-3 axes. 
The von Mises stress is the driving force for damage in many ductile engineering materials, 
and is routinely computed by most commercial finite element stress analysis codes. 
The value of von Mises stress σM,Y needed to cause yield can be determined from the tensile 
yield stress σY, since in tension at the yield point we have σ1 = σY,    σ2 = σ3 = 0. Then 

 
Hence the value of von Mises stress needed to cause yield is the same as the simple tensile 
yield stress. 
The shear yield stress k can similarly be found by inserting the principal stresses corre-
sponding to a state of pure shear in the Mises equation. Using k =  σ1 = -σ3 and σ2 = 0, we 
have: 

 
Note that this result is different than the Tresca case, in which we had k =  σY/2. 
The von Mises criterion can be plotted as a yield locus as well. Just as the Tresca criterion, it 
must pass through σY on each axis. However, it plots as an ellipse rather than the prismatic 
shape of the Tresca criterion (see Fig. 7). 

 

Figure 7: Yield locus for the von Mises criterion. 

Effect of hydrostatic pressure 

Since in the discussion up to now yield has been governed only by shear stress, it has not 
mattered whether a uniaxial stress is compressive or tensile; yield occurs when σ =  ±σY. This 
corresponds to the hydrostatic component of the stress -p =  (σx+σy+σz)/3 having no influence 
on yield, which is observed experimentally to be valid for slip in metallic systems. Polymers, 
however, are much more resistant to yielding in compressive stress states than in tension. The 
atomistic motions underlying slip in polymers can be viewed as requiring “free volume” as 



the molecular segments move, and this free volume is diminished by compressive stresses. It 
is thus difficult to form solid polymers by deformation processing such as stamping and 
forging in the same way steel can be shaped; this is one reason the vast majority of 
automobile body panels continue to be made of steel rather than plastic. 

 

 
Figure 8: Effect of pressure on the von Mises yield envelope. 

 
This dependency on hydrostatic stress can be modeled by modifying the yield criterion to 
state that yield occurs when 

 
where τ0 and A are constants. As p increases (the hydrostatic component of stress becomes 
more positive) the shear stress needed for yield becomes greater as well, since there is less 
free volume and more hindrance to molecular motion. The effect of this modification is to 
slide the von Mises ellipse to extend less into the I quadrant and more into the III quadrant as 
shown in Fig. 8. This shows graphically that greater stresses are needed for yield in 
compression, and lesser stresses in tension. 
 

 
Figure 9: A craze in polystyrene (from R. Kambour, “Crazing,” Encyclopedia of Polymer 
Science and Engineering, Wiley-Interscience, 1991). 
 
Several amorphous glassy polymers — notably polystyrene, polymethylmethacrylate, and 
polycarbonate — are subject to a yield mechanism termed “crazing” in which long elongated 
voids are created within the material by a tensile cavitation process. Figure 9 shows a craze in 
polystyrene, grown in plasticizing fluid near Tg. The voids, or crazes, are approximately 



1000A thick and microns or more in length, and appear visually to be much like conventional 
cracks. They differ from cracks, however, in that the broad faces of the crazes are spanned by 
a great many elongated fibrils that have been drawn from the polymer as the craze opens. The 
fibril formation requires shear flow, but the process is also very dependent on free volume. A 
successful multiaxial stress criterion for crazing that incorporates both these features has been 
proposed of the form 

 
The left hand side of this relation is proportional to the shear stress, and the denominator in 
the second term on the right hand side is related to the hydrostatic component of the stress. As 
the hydrostatic tension increases, the shear needed to cause crazing decreases. The parameters 
A and B are adjustable, and both depend on temperature. This relation plots as a batwing on 
the yield locus diagram as seen in Fig. 10, approaching a 45° diagonal drawn through the II 
and IV quadrants. Crazing occurs to the right of the curve; note that crazing never occurs in 
compressive stress fields. 

 

Figure 10: The Sternstein envelopes for crazing and pressure-inhibited shear yielding. 

Crazing is a yield mechanism, but it also precipitates brittle fracture as the craze height 
increases and the fibrils are brought to rupture. The point where the craze locus crosses the 
shear yielding locus is therefore a type of mechanically induced ductile-brittle transition, as 
the failure mode switches from shear yielding to craze embrittlement. Environmental agents 
such as acetone that expand the free volume in these polymers greatly exacerbate the 
tendency for craze brittleness. Conversely, modifications such as rubber particle inclusions 
that stabilize the crazes and prevent them from becoming true cracks can provide remarkable 
toughness. Rubber particles not only stabilize crazes, they also cause a great increase in the 
number of crazes, so the energy absorption of craze formation can add to the toughness as 
well. This is the basis of the “high impact polystyrene,” or HIPS, mentioned at the outset of 
this chapter. 

Effect of rate and temperature 

The yield process can be viewed as competing with fracture, and whichever process has the 
lowest stress requirements will dominate. As the material is made less and less mobile, for 
instance by lowering the temperature or increasing the number and tightness of chemical 
bonds, yielding becomes more and more difficult. The fracture process is usually much less 
dependent on mobility. Both yield and fracture stresses usually increase with decreasing 
temperature, but yield is more temperature-dependent (see Fig. 11). This implies that below a 
critical temperature (called the ductile-brittle transition temperature TDB) the material will 



fracture before it yields. Several notable failures in ships and pipelines have occurred during 
winter temperatures when the steels used in their manufacture were stressed below their TDB 
and were thus unable to resist catastrophic crack growth. In polymers, the ductile-brittle 
transition temperature is often coincident with the glass transition temperature. Clearly, we 
need an engineering model capable of showing how yield depends on temperature, and one 
popular approach is outlined below. 

Yield processes are thermally activated, stress driven motions, much like the flow of 
viscous liquids. Even without going into much detail as to the specifics of the motions, it is 
possible to write down quite effective expressions for the dependency of these motions on 
strain rate and temperature. In the Eyring view of thermally activated processes, an energy 
barrier EY∗ must be overcome for the motion to proceed. (We shall use the asterisk 
superscript to indicate activation parameters, and the Y subscript here indicates the yield 
process.) 

  



Figure 11: Schematic illustration of the temperature dependence of yield and fracture stress. 

A stress acts to lower the barrier when it acts in the direction of flow, and to raise it when 
it opposes the flow. 
Consider now a constant strain rate test ( ε& = const), in which the stress rises until yield occurs 
at σ = σY. At the yield point we have dσ/d ε  = 0, so a fluid like state is achieved in which an 
increment of strain can occur without a corresponding incremental increase in stress. 
Analogously with rate theories for viscous flow, an Eyring rate equation can be written for the 
yielding process as 

 
Here k is Boltzman’s constant and V* is a factor governing the effectiveness of the stress in 
reducing the activation barrier. It must have units of volume for the product σYV* to have 
units of energy, and is called the “activation volume” of the process. Taking logs and 
rearranging, 

 
Hence plots of σY/T versus ln e should be linear with a slope k/V* as seen in Fig. 12, from 
which the activation volume may be computed. The horizontal spacing between two lines at 
differing temperatures T1 and T2 gives the activation energy: 

 
Apparent activation volumes in polymers are on the order of 5000̊A3, much larger than a 
single repeat unit. This is taken to indicate that yield in polymers involves the cooperative 
motion of several hundred repeat units. 

 

Example 3 

The yield stress for polycarbonate is reported at 60 MPa at room-temperature (23° C = 
296° K), and we wish to know its value at 0°C (273°K), keeping the strain rate the same. 
This can be accomplished by writing Eqn. 4 out twice, once for each temperature, and 
then dividing one by the other. The parameters ε& e and ε& 0 cancel, leaving 

 

From the data in Fig. 12, the yield activation parameters are Ey =  309 kJ/mol, V* =  3.9 
× 103m3/mol. Using these along with R =  8.314 J/mol and  

 



 
Figure 12: Eyring plot showing dependence of yield strength on temperature and strain rate in 
polycarbonate (from N.G. McCrum, C.P Buckley and C.B. Bucknall, Principles of Polymer 
Engineering, Oxford University Press, 1988). 
We have, 

σY
273 = 61.5 MPa 

 
Continuum plasticity 

Plasticity theory, which seeks to determine stresses and displacements in structures all or 
part of which have been stressed beyond the yield point, is an important aspect of solid 
mechanics. The situation is both materially and geometrically nonlinear, so it is not a trivial 
undertaking. However, in such areas as metal forming, plasticity theory has provided valuable 
insight. We will outline only a few aspects of this field in the following paragraphs, to 
introduce some of the fundamental concepts that the reader can extend in future study. 

Plastic deformation 

A useful idealization in modeling plastic behavior takes the material to be linearly elastic 
up to the yield point as shown in Fig. 13, and then “perfectly plastic” at strains beyond yield. 
Strains up to yield (the line between points a and b ) are recoverable, and the material unloads 
along the same elastic line it followed during loading; this is conventional elastic response. 
But if the material is strained beyond yield (point b), the “plastic” straining beyond b takes 
place at constant stress and is unrecoverable. If the material is strained to point c and then 
unloaded, it follows the path cd (a line parallel to the original elastic line ab) rather than 
returning along cba. When the stress has been brought to zero (point d), the plastic strain ad 
remains as a residual strain. 

Plastic deformation can generate “ residual” stresses in structures, internal stresses that 
remain even after the external loads are removed. To illustrate this, consider two rods having 
different stress-strain curves, connected in parallel (so their strains are always equal) as 
shown in Fig. 14.  When the rods are strained up to the yield point of rod B (point a on the 
strain 

 

Figure 13: The elastic-perfectly plastic idealization of plastic deformation. 



axis), rod A will have experienced an amount of permanent plastic deformation ep. When the 
applied load is removed, rod B unloads along its original stress-strain curve, but rod A follows 
a path parallel to its original elastic line. When rod A reaches zero stress (point b), rod B will 
still be in tension (point c). In order for the load transmitted by the rods together to come to 
zero, rod B will pull rod A into compression until -σB = σA as indicated by points d and e. 
Residual stresses are left in the rods, and the assembly as a whole is left with a residual tensile 
strain. 

 

Figure 14: Plastic deformation of two-bar assembly. 

Compressive residual stress can be valuable if the structure must bear tensile loads. 
Similarly to how rapid quenching can be used to make safety glass by putting the surfaces in 
compression, plastic deformation can be used to create favorable compressive stresses. One 
famous such technique is called “autofrettage;” this is a method used to strengthen cannon 
barrels against bursting by pressurizing them from the inside so as to bring the inner portion 
of the barrel into the plastic range. When the pressure is removed, the inner portions are left 
with a compressive residual stress just as with bar A in the above example. 

Wire drawing 
To quantify the plastic flow process in more detail, consider next the “drawing” of wire4, in 
which wire is pulled through a reducing die so as to reduce its cross-sectional area from A0 to 
A as shown in Fig. 15. Since volume is conserved during plastic deformation, this corresponds 
to an axial elongation of L/L0 =  A0/A. Considering the stress state to be simple uniaxial 
tension, we have 
 

  



Figure 15: Wire drawing. 
σ1 = σy, σ2 = σ3 =0 

where 1 denotes the direction along the wire and 2 and 3 are the transverse directions.   The 
work done in stretching the wire by an increment of length dL, per unit volume of material, 
is 

 
Integrating this from L0 to L to obtain the total work: 

 
The quantity ln(L/L0) is the logarithmic strain Tε . 

Example 4 
The logarithmic strain can be written in terms of either length increase or area reduction, 
due to the constancy of volume during plastic deformation: Tε .= ln(L/L0) = ln(A0/A). In 
terms of diameter reduction, the relation A =  πd2 /4 leads to: 

 
Taking the pearlite cell size to shrink commensurately with the diameter, we expect the wire 
strength σf to vary according to the Hall-Petch relation with 1/ d . The relation between 
wire strength and logarithmic drawing strain is then 

 
The work done by the constant pulling force F in drawing an initial length L0 of wire to a 
new length L is W = FL. This must equal the work per unit volume done in the die, 
multiplied by the total volume of wire: 

 
Written in terms of area reduction, this is 

 

This simple result is useful in estimating the requirements of wire drawing, even though it 
neglects the actual complicated flow field within the die and the influence of friction at the 
die walls. Both friction at the surface and constraints to flow within the field raise the force 
needed in drawing, but the present analysis serves to establish a lower-limit approximation. 
It is often written in terms of the drawing stress σ1 = F/A and the area reduction ratio r =  
(A0 - A)/A0 =  1 - (A/A0): 

 
Note that the draw stress for a small area reduction is less than the tensile yield stress. In 
fact, the maximum area reduction that can be achieved in a single pass can be estimated by 
solving for the value of r which brings the draw stress up to the value of the yield stress, 
which it obviously cannot exceed. This calculation gives 



 

 
Hence the maximum area reduction is approximately 63%, assuming perfect lubrication at 
the die. This lower-bound treatment gives an optimistic result, but is not far from the 
approximately 50% reduction often used as a practical limit. If the material hardens during 
drawing, the maximum reduction can be slightly greater. 

 

Slip-line fields 

In cases of plane strain, there is a graphical technique called slip-line theory which 
permits a more detailed examination of plastic flow fields and the loads needed to create 
them. Friction and internal flow constraints can be included, so upper-bound 
approximations are obtained that provide more conservative estimates of the forces needed 
in deformation. Considerable experience is needed to become proficient in this method, but 
the following will outline some of the basic ideas. 

Consider plane strain in the 1-3 plane, with no strain in the 2-direction. There is a 
Poisson stress in the 2-direction, given by 

 
Since ν = 1/2 in plastic flow, 

 
The hydrostatic component of stress is then 

 
Hence the Poisson stress σ2 in the zero-strain direction is the average of the other two 
stresses σ1 and σ2, and also equal to the hydrostatic component of stress. The stress state can 
be specified in terms of the maximum shear stress, which is just k during plastic flow, and 
the superimposed hydrostatic pressure p: 

 
Since the shear stress is equal to k everywhere, the problem is one of determining the 
directions of k (the direction of maximum shear, along which slip occurs), and the 
magnitude of p. 

The graphical technique involves sketching lines that lie along the directions of k. Since 
maximum shear stresses act on two orthogonal planes, there will be two sets of these lines, 
always perpendicular to one another and referred to as α-lines and β-lines. The direction of 
these lines is specified by an inclination angle φ. Any convenient inclination can be used for 
the φ = 0 datum, and the identification of α- vs. β-lines is such as to make the shear stress 
positive according to the usual convention. As the pressure p varies from point to point, 
there is a corresponding variation of the angle φ, given by the Hencky equations as 

p +  2kφ = C1 =  constant, along an α-line 

p — 2kφ = C2 = constant, along a β-line 
Hence the pressure can be determined from the curvature of the sliplines, once the constant 
is known. 



 
The slip-line field must obey certain constraints at boundaries: 

1. Free surfaces: Since there can be no stress normal to a free surface, we can put σ3 = 0 
there and then 

p =  k,    σ1 = -p -k =  -2k 
Hence the pressure is known to be just the shear yield strength at a free surface. 
Further more, since the directions normal and tangential to the surface are principal 
directions, the directions of maximum shear must be inclined at 45° to the surface. 

2. Frictionless surface: The shear stress must be zero tangential to a frictionless surface, 
which again means that the tangential and normal directions must be principal 
directions. Hence the slip lines must meet the surface at 45°. However, there will in 
general be a stress acting normal to the surface, so σ3 ≠  0 and thus p will not be equal 
to k. 

3. Perfectly rough surface: If the friction is so high as to prevent any tangential motion 
at the surface, the shearing must be maximum in a direction that is also tangential to 
the surface. One set of slip lines must then be tangential to the surface, and the other 
set normal to it. 

 

Figure 16: Slip-line construction for a flat indentation. 

Consider a flat indentor of width b being pressed into a semi-infinite block, with 
negligible friction (see Fig. 16). Since the sliplines must meet the indentor surface at 45°, 
we can draw a triangular flow field ABC. Since all lines in this region are straight, there can 
be no variation in the pressure p, and the field is one of “constant state.” This cannot be the 
full extent of the field, however, since it would be constrained both vertically and laterally 
by rigid metal. The field must extend to the free surfaces adjacent to the punch, so that 
downward motion under the punch can be compensated by upward flow adjacent to it. Two 
more triangular regions ADF and BEG are added that satisfy the boundary conditions at free 
surfaces, and these are connected to the central triangular regions by “fans” AFC and BCG. 
Fans are very useful in slip-line constructions; they are typically centered on singularities 
such as points A and B where there is no defined normal to the surface. 
The pressure on the punch needed to establish this field can be determined from the 
sliplines, and this is one of their principal uses. Since BE is a free surface, σ3 = 0 there and 
p =  k. The pressure remains constant along line EG since φ is unchanging, but as φ 
decreases along the curve GC (the line curves clockwise), the pressure must increase 
according to the Hencky equation. At point C it has rotated through -π/2 so the pressure 
there is 



 
The pressure remains unchanged along lines CA and CB, so the pressure along the punch 
face is also k(1 + π). The total stress acting upward on the punch face is therefore 

 
The ratio of punch pressure to the tensile yield strength 2k is 

 
The factor 2.571 represents the increase over the tensile yield strength caused by the 
geometrical constraints on the flow field under the punch. 

The Brinell Hardness Test is similar to the punch yielding scenario above, but uses a 
hard steel sphere instead of a flat indentor. The Brinell hardness H is calculated as the load 
applied to the punch divided by the projected area of the indentation. Analysis of the Brinell 
test differs somewhat in geometry, but produces a result not much different than that of the 
flat punch: 

 
This relation is very useful in estimating the yield strength of metals by simple 

nondestructive indentation hardness tests 


