Spring 2008 Lecture 9

SLAB ANALYSISFOR FLAT

ROLLING

Figure 1. Schematic of flat rolling showing the neutral point
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Figure 2: Stresses on an element inrolling: (a) entry zone and (b) exit zone

For small angles take ¢, ~ —p and for plane strain (¢, = () =
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true anywhere inside the deformation zone
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h changes with ¢ as follows:

Figure 3: Approximation of /i in terms of ¢.
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We assume that as the material advances inside the deformation zone, its hardening behavior is such
that: Yh = constant (so as h decreases, Y increases such that the product Yh remains constant!!! A
ridiculous assumption that however is better than assuming thatY is constant inside the deformation
zonel).



Returning to the equilibrium equation with the above assumption, we can write:
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Let us integrate the above equation in the entry region fromj =a to ageneral anglej . Similar
calculation can be applied to the exit region
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Notethat in the last cal culation we used the following integral formula:
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At the entry region using the yield condition, one can write the following:
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where Yoo = 2 Yenuy.

So returning to equation (8), we can write:
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Finally, the following pressure distribution is derived in the entry region:
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where H and H, are given by equation (12).

To derive the corresponding equation in the exit region, you can repeat the above cal culations
byintegrating equation (6) (with the bottom sign in+) from angle f to angle O (exit). Itisalso

possible to derive the distribution of p at the exit using equation (14) with some changes!
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Equations (14) and (16) define the compl ete pressure distribution in the deformation zone.

Calculation of the Neutral Point
Equate the two pressure expressions from equations (14) and (16):
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Simplifying for the case op = o5 = 0 leads to:
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