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FEM and ANN Analysis in Fine-Blanking Process

F. Djavanroodi, A. Pirgholi, and E. Derakhshani

Department of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran

Fine-blanking (FB) is an effective and economical shearing process that offers a precise and clean cutting-edge finish, eliminates unnecessary
secondary operations, and increases quality. In the traditional blanking product development paradigm, the design of the formed product and tooling
is usually based on know-how and experience, which are generally obtained through long years of apprenticeship and skilled craftsmanship.

In this study, the possibility of using finite element method (FEM) together with artificial neural networks (ANN) was investigated to analysis
the fine-blanking process. Finite element analysis was used to simulate the process with an isotropic elastic–plastic material model. The results
compare well with experimental results available in the literature; after confirming the validity of the model with experimental data, a number
of parameters such as V-ring height effect, punch and holder force on die-roll, hydrostatic pressure status as an important factor in increasing
burnish zone, and accuracy of part and radial stress status as a factor in increasing die erosion, which were also used for training the ANN, were
considered. Finally, numerical data were used to train neural networks. The Levenberg–Marquardt (LM) algorithm with three neurons in the hidden
layer (LM-3) appeared to be the most optimal topology and gives the best results. It was found that the coefficient of multiple determinations (R2

value) between the FEM and ANN predicted data is equal to about 0.999 for the size of die-roll, therefore indicating the possibility of FEM and
ANN as a powerful design tool for the fine-blanking process.

Keywords Artificial neural networks; Clearance; Die-edge radius; Fine-blanking; Finite element method; Hydrostatic pressure; V-ring.

Introduction

Fine-Blanking Process
Fine-blanking (FB) is generally well known as an

effective and economical shearing process that offers
a precise and clean cutting-edge finish, eliminates
unnecessary secondary operations, and increases quality.
This process utilizes triple-action tools: a punch, a stripper
with an indented V-ring, and a counterpunch (ejector) to
generate a high compressive stress state. Figure 1 shows
a comparison between fine-blanking and conventional
processes. Nowadays, this technology is being used in
automotive, aerospace, and many other industries.
However, in recent years, technical requirements for fine-

blanking are more demanding. It is difficult to determine the
optimal die design and working parameters by traditional
approaches, such as the use of a database or trial-and-error
approach. Although, due to large strain concentrated on the
blanked zone and crack formation, it is difficult to run an
accurate finite element (FE) calculation, the finite element
method (FEM) has been verified for fine-blanking [1–4].
In this article, firstly an axisymmetric elastic–plastic,

nonlinear analysis was performed by FEM and the effect
of clearance on the size of die-roll and punch force
was compared with open literature laboratory result [4].
Secondly, after confirming the validity of the model with
experimental data, a number of parameters that were
subsequently used for training of the artificial neural
network (ANN) were also considered. In this study, FEM
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was used as a tool to clarify the effects of V-ring height,
punch, and holder force on die-roll and hydrostatic pressure
status as an important factor in increasing burnish zone
and accuracy of part and radial stress status as a factor in
increasing die erosion.

Artificial Neural Networks
The ANN is a computational network that attempts

to simulate the process that occurs in the human brain
and nervous system during pattern recognition, information
filtering, and functional control [5]. It uses an inductive
approach to generalize the input–output relationship to
approximate the desired function; such specific capacity is
helpful when the case is difficult to derive a mathematical
model. Due to this property, its promising applications in
product design and development in metal-forming product
development as a relationship of performance and behavior
of the designed forming system with its design parameters is
very difficult to be represented as an explicit mathematical
model [6]. There is very little literature work on the use
of ANNs in FB. Chan et al. [6] developed an integrated
methodology based on FEM simulation of an ANN to
approximate the function of design parameters and the
performance of designs in such a way that the optimal
design can be identified. Fuh et al. [7] used an ANN in
estimation of plastic injection molding production cost.
Nineteen cost-related factors were considered and historical
cost data were use to train the ANN. They reported that the
estimation could be more accurate by using different ANN
structures for different cost ranges. Raj et al. [8] used FEM
and ANN to model the hot upsetting, hot extrusion, and
metal cutting processes. The process load was estimated
by presenting the required process parameters to the ANN.
They showed that it is possible to use an ANN in the
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FEM AND ANN ANALYSIS IN FINE-BLANKING PROCESS 865

Figure 1.—Schematic illustration of one setup for fine-blanking and
conventional processes.

automatic selection of tools and real-time monitoring of
tool wear. Di Lorenzo et al. [9] applied an ANN to predict
ductile fracture in cold-forming operations. They used FEM
to predict effective strain, tangential stress, effective stress,
maximum principle stress, and mean stress at the critical
regions of the workpiece in five forming steps, and those
variables were then input to the ANN for estimating the
occurrence of ductile fracture. Ko et al. [10] utilized an
ANN to evaluate the design in multistage metal-forming
to avoid ductile fracture. In their study, a bolts cold-
heading process was optimized to demonstrate and validate
their proposed design method. Furthermore, Kim et al.
[11] utilized the ANN’s function approximation ability
to find the optimum design to eliminate the underfilling
defect of the rib-web product and enhance the dimensional
accuracy of the cylindrical pulley. Viswanathan et al. [12]
investigated springback of a steel channel-forming process
using an ANN and a stepped binder force trajectory. They
concluded that the neural network control algorithm is
able to effectively capture the nonlinear relationship and
interactions of the process parameters. Petterson et al. [13]
applied flexible neural networks using a multi-objective
predator–prey genetic algorithm to steel plate processing.
In their study, data for yield strength and ultimate tensile
strength of the rolled slabs in terms of a total of 108
process variables were used. They concluded that nitrogen
content of the steel is the most significant input variable.
Ciurana et al. [14] studied surface finishing, and geometrical
and dimensional features of the grooves/cavities were
investigated in a laser micromachining (laser milling)
process of hardened AISI H13 tool steel using a pulsed
Nd:YAG laser. They successfully developed multiple linear
regression and neural network models to predict surface
roughness and geometrical and dimensional features. Forsik
and Bhadeshia [15] designed and experimentally verified
a neural network to model the elongation of neutron-
irradiated. Modeling uncertainties due to the lack of
experimental data were reported when the model was
extrapolated. Ryu and Bhadeshia [16] analyzed a large
database on hot-rolled steels and developed a neural network
model that estimates the strength as a function of chemical
composition and process variables. Wen et al. [17] designed
and trained a general regression neural network (GRNN)
and a sequential quadratic programming (SQP) method to
determine an optimal parameter setting for a die-casting
process. They showed that, by combining a GRNN with the
SQP algorithm, the trial-and-error process can be eliminated

and the model can be used to predict the wear mass losses
of the die-casting process.
Analytical analysis of fine-blanking is a very complex

process, mainly because of the limited experimental data
and analytical functions required for calculations, which
usually involves the solution of complex differential
equations. In order to simplify this complex process,
attempts have been made to combine the ANN and FEM
simulation to support the FB process. Figure 2 presents the
framework of the methodology used.

Fine-blanking modeling

Simulation with FEM
An example of the FEM simulation model used in this

study is shown in Fig. 3: the V-ring indenters formed on
both the blank holder and die. The blanked material was
AISI 1045 with a thickness of 4.5mm. The mechanical
properties of AISI 1045 were an ultimate tensile strength of

Figure 2.—Framework of the methodology used.
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866 F. DJAVANROODI ET AL.

Figure 3.—V-ring indenters formed on both the blank holder and die.

585MPa and an elongation of 12%, as shown in Table 1, and
a two-dimensional axisymmetric elastic–plastic, nonlinear
analysis was performed by FEM. The mechanical properties
and parameters used in FE analysis are shown in Table 1 [4].
Due to the shear band developed during the cutting

process in the clearance zone, extra attention was given
to the clearance zone. Therefore, a highly fine mesh was
generated in the clearance zone. In other areas, mesh sizes
are larger to decrease the analysis time. Mesh sensitivity
was performed and it was found that at 0.04mm element
size, a stable state of hydrostatic stress was achieved.

Formulation with ANNs
For training of the ANNs the numerical results used were

obtained from the FEM after confirming the validation of
the model with laboratory results [4]. The back-propagation
learning algorithm is used in a feed-forward, single hidden
layer network. In the majority of neural networks no transfer
functions for the input layer are considered, so neurons in
the input layer have no transfer function [18]. A tangent
sigmoid (Tansig) transfer function is used as the activation
function for the hidden layer. The transfer function used is
presented in Eq. (1). The values of the training and test data
were normalized to a range of �−1� 1�.

Tangsig�z� = 2�1+ exp�−2z��− 1 (1)

Table 1.—FEM simulation conditions.

Simulation model Axisymmetric model

Workpiece Elasto-plastic
Punch/die Rigid
Blank holder Rigid
Counterpunch Rigid
Blanked material S45C (�B = 585MPa, � =

12%) �̄ = k�̄n (n = 0�11,
k = 1020)

Friction coefficient (�) 0.1

where z is the weighted sum of the input. A computer
program has been performed for the ANN simulation and
the data pattern from the FEM were used for training of
the network. Five numbers of available data were randomly
selected and used as test data set. Statistical methods,
including mean square error (MSE), root-mean-squared
(RMS), absolute fraction of variance (R2), and coefficient
of variation in percentage (cov) values, were used for
comparison. Error during the learning is RMS and is defined
as follows:

RMS =
(
1/p

∑
j

�tj − oj �2
)1/2

(2)

In addition, R2 and coefficient of variation in percentage
(cov) are defined as follows, respectively:

R2 = 1−
(∑

j �tj − oj�
2

∑
j �oj�

2

)
(3)

cov = RMS

omean

× 100 (4)

where t is target value, o is output value, p is pattern, and
omean is the mean value of all output data [19].
The performance of the network can be evaluated by the

mean square error (MSE), which is defined as:

MSE = 1/p
∑
j

�tj − oj �2 (5)

Inputs and outputs are normalized in the �−1� 1� range as
shown in Eq. (6).

vn = 2�vR − vMin�/�vMax − vMin�− 1
(6)

Variants of the algorithm used in the study are scaled
conjugate gradient (SCG), Pola–Ribiere conjugate gradient
(CGP), and Levenberg–Marquardt (LM). The decrease of
the mean square error (MSE) during the training process is
shown in Fig. 4. The coefficient of multiple determination
(R2 value) obtained is 0.999 for the LM algorithm, which
is satisfactory (Fig. 4).

Results and discussion

Results of FEM
Figure 5 shows the effect of clearance on width (a)

and depth (b) of the die-roll. With increasing clearance,
the width and depth of the die-roll increase, which is in
good agreement with experimental work performed in Kwak
et al. [4]. The dependence of clearance on die-roll size is
shown in Fig. 6. As can be seen, with decreasing clearance,
distribution of equivalent stress and strain becomes thinner
and a smaller area in the clearance zone is deformed.
Thus, with a small clearance, the size of the die-roll and
deformation zone become smaller and it is able to produce
more precision parts.
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Figure 4.—Training results based on the 3-3-2 configuration.

Figure 7 shows that with decreasing clearance, the
maximum of punch force increases slightly. These results
are consistent with engineering insight and have a
good accordance with the experiment results [4]. Punch
penetration in this analysis was taken to be 50% of sheet
thickness.

Figure 5.—Variation of die-roll size (mm) according to die clearance
(percentage of sheet thickness).

Figure 6.—Die-roll size and distribution of stress depend on clearance.

The radius of the edge die does not have much effect on
the size of the die-roll and accuracy of the product, as shown
in Fig. 8. Therefore, it can be used for better extruding of
material in the clearance zone.
Figure 9 shows the effect of V-ring height on the state of

hydrostatic pressure after V-ring action and before punch
movement. With increasing V-ring height, hydrostatic
pressure increases and ductile fracture is delayed. Therefore,
the burnish zone and accuracy will increase.
In Fig. 10 it is observed that with increasing V-ring

height, the size of the die-roll decreases. In accordance
with Figs. 9 and 10, utilizing a V-ring in the die and sheet
holder increases hydrostatic pressure in the clearance zone,
especially on the side of the die. Also, the size of the

Figure 7.—The simulation result of load–stroke curve.
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868 F. DJAVANROODI ET AL.

Figure 8.—Variation of die-roll depth (mm) according to radius of the edge
die (mm).

die-roll will decrease. But in accordance with Fig. 11, the
inverse radial stress in the thickness direction will increase
with increasing V-ring height and decreasing distance from
the clearance zone after V-ring action and before punch
movement. Therefore, torque and subsequently dishing will
increase.
Utilizing a counterpunch will decrease this imperfection.

Also, utilizing a V-ring in dies and sheet holder regulates
radial stress in the clearance zone.
Figure 12 shows a punch penetrates radial stress increase

in sidewall of punch, with increasing V-ring height. This
will cause friction and erosion of the tool to increase and a
subsequent decrease in tool life.
The effect of counterpunch force and sheet holder (V-

ring) on hydrostatic pressure in the clearance zone and radial
stress in the sidewall of the punch and die is illustrated in
Figs. 13 and 14. With increasing force of the counterpunch
and sheet holder, hydrostatic pressure will increase. At the
same time, as shown in Fig. 14, radial stress in the sidewall
of the punch and die will increase, which will cause erosion
of the tool.
Radial stress distribution of the tool sidewall is illustrated

in Fig. 15. Increasing forces without a V-ring has little effect
on hydrostatic pressure. Also, utilization of a V-ring in both

Figure 9.—Variation of hydrostatic pressure according to V-ring height.

Figure 10.—Variation of die-roll size according to V-ring height.

the die and sheet holder (2V-ring) is very effective without
increasing force in the counterpunch and sheet holder.

Results of ANNs
The ANN was built and trained in a MatlabTM

environment [20]. The training process adjusts the weight
of each neuron to an appropriate value. There are many
available training algorithms, but the most popular one
is the error back-propagation algorithm [5–7] and it was
used in this study. There is no strict rule for designing
the ANN structure. However, the number of neurons in
the hidden layers is critical to determine the complexity
level of the function. In order to calculate the depth of the
die-roll (D) and width of the die-roll (W), mathematical
formulations can be derived from the resulting weights and
the activation functions used in the ANN. Because the
regression coefficients obtained from both the training and
testing of the ANNs were extremely good in both cases, it
is believed that the results thus obtained would be accurate.
As expected, the best approach, which performed with
minimal errors, is the LM algorithm with three neurons [18].
Levenberg–Marquardt (LM) back-propagation training was
repeatedly applied until satisfactory training was achieved.

Figure 11.—Variation of radial stress in the clearance zone according to
V-ring height and distance.
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Figure 12.—Variation of radial stress in the sidewall of the punch according
to V-ring height.

The configuration 3-3-2 appeared to be the most optimal
topology for this application. It would have been possible
to optimize the topology of the neural network utilizing
multi-objective genetic algorithms for training of the neural
network. In this method the number of nodes in the hidden
layer, the architecture of the network, and the weights can
be taken as variables, and a Pareto front can be constructed
by minimizing the training error along with the network
size [21–25].
Figure 16 shows the architecture of the ANN used for the

depth and width of die-roll prediction. The radius of edge
die (R), V-ring height (H), and clearance (C) are the input
data and the depth of die-roll (D) and width of die-roll (W)
are the actual outputs.
From the data presented in Table 2, depth of die-roll

(D) and values of the LM algorithm with three neurons in
the hidden layer (LM-3) appeared to be the most optimal
topology.
The regression curves of the output variable die-roll depth

(D) and die-roll width (W) for the test data set are shown in
Figs. 17 and 18, respectively. It should be noted that these

Figure 13.—Variation of hydrostatic pressure according to punch and sheet
holder force.

Figure 14.—Variation of radial stress in the clearance zone according to
punch and sheet holder force.

Figure 15.—Distribution of radial stress in the sidewall of the tool.

Figure 16.—ANN structure used for Cd formulation prediction.
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Table 2.—Statistical values of the training process for depth of the die.

Neurons MSE RMS R2 Cov

3 0.0003 0.0185 0.9998 1.4214
4 0.0004 0.0203 0.9998 1.5675
5 0.0465 0.2157 0.9777 15.2537
6 0.0007 0.027 0.9996 2.0896
7 0.0016 0.0395 0.9991 3.0529
8 0.0006 0.0255 0.9996 1.9521
9 0.0061 0.0781 0.9964 6.0751
10 0.0033 0.0575 0.9981 4.3717

Figure 17.—Comparison of actual and ANN-predicted values for D (test
data set).

Figure 18.—Comparison of actual and ANN-predicted values for W (test
data set).

Table 3.—Statistical values of test process for depth of
the die.

No. D: NN D: FEM D: EXP
% Error (ANN

and EXP)

4 0.31 0.31
11 0.39 0.39
14 0.23 0.22
26 0.24 0.22 0.25 4.00
34 0.32 0.34 0.31 4.00

Table 4.—Statistical values of test process for width of
the die.

No. W: NN W: FEM W: EXP
% Error (ANN

and EXP)

4 1�3 1.29
11 1�44 1.43
14 1�15 1.14
26 1�23 1.2 1.31 6.1
34 1�47 1.45 1.5 2.00

Table 5.—Statistical values of the test process for width of
the die.

Neurons MSE RMS R2 Cov

3 0.0002 0.0138 0.9982 4.3664
4 0.0002 0.014 0.9981 4.493
5 0.0093 0.0967 0.9398 26.3061
6 0.0015 0.0389 0.984 13.1032
7 0.0002 0.0154 0.9977 5.0081
8 0.0006 0.0246 0.9943 7.7505
9 0.0015 0.0387 0.9857 12.4123
10 0.0032 0.0569 0.9704 18.9873

Table 6.—Weight values obtained using LM algorithm with three neurons
for the input layer.

Ei = C1i ∗ R+ C2i ∗ V + C3i ∗ C + C4i

i C1i C2i C3i C4i

1 −6�9647 25.0233 34.2698 −12�0929
2 1.4715 −4�2241 18.6206 −1�9756
3 0.0561 −0�2675 0.4009 0.1767

Table 7.—Weight values obtained using LM algorithm with three neurons
for the hidden layer.

Out�i� = B1i ∗ F1 + B2i ∗ F2 + B3i ∗ F3 + B4i

i B1i B2i B3i B4i

1 −0�1053 −0�1148 1.8536 −0�3334
2 −0�1270 −0�0609 1.6224 −0�3286

data were completely unknown to the network. Tables 3 and
4 show the comparison of the ANN, FEM, and experimental
results for the depth and width of the die.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
I
r
a
n
 
U
n
i
v
e
r
s
i
t
y
 
o
f
 
S
c
i
e
n
c
e
 
&
 
T
e
c
h
n
o
l
o
g
y
]
 
A
t
:
 
0
8
:
1
9
 
5
 
S
e
p
t
e
m
b
e
r
 
2
0
1
0



FEM AND ANN ANALYSIS IN FINE-BLANKING PROCESS 871

In Table 5, the statistical values of the test process for the
width of die are shown. As can be seen, the error is very
small. Neurons in the input layer have no transfer function.
A tangent sigmoid transfer function has been used.

f �Ei� = 2/�1+ exp�−2× Ei��− 1 (7)

where Ei is the weighted sum of the input and should be
taken from Table 6. Finally, the outputs of the ANN obtain
are shown in Table 7.

Conclusion

1. Even with the FEM simulation technology, it is
impossible to conduct all simulations for any given point
in the process. Fine-blanking usually involves many
process parameters. A subtle change of any parameter
will constitute a new scenario and a new simulation
is needed to explore its behaviors and performance. It
is not pragmatic to find the optimal solution through
one-by-one simulation. To address this issue, a new
approach was used, a combination of FEM and ANN.
This combination helps to reduce the simulation time
and make it possible to search for the optimal process
parameters in fine-blanking. All the validation results
show that the estimation of ANN can achieve a
satisfactory level.

2. As a result of the FEM study, the following conclusions
can be realized: With decreasing clearance and
increasing V-ring height, hydrostatic pressure increases
and die-roll size decreases. Also, with increasing force
of the counterpunch and sheet holder, hydrostatic
pressure increases; therefore, quality and accuracy of the
product will increase. However, with these qualifications,
radial stress increases in the sidewall of the tool, and
subsequently friction and erosion of the tool increase.
This will cause the life of tool and press to decrease.
Utilizing a V-ring in both the die and sheet holder is
more effective for quality and accuracy of the product.
Therefore, we can use minor force of the tool and
subsequently the life of the tool and press increase. In the
other words, utilizing a V-ring in both the die and sheet
holder is more economical in fine-blanking processes.

Nomenclature

CGP Pola-Ribiere conjugate gradient
cov Coefficient of variation (%)
LM Levenberg–Marquardt
MSE Mean square error
omean Mean value of all output data
R2 Absolute fraction of variance (R2)
RMS Root-mean-squared
SCG Scaled conjugate gradient
vmax Maximum value in all the values for

related variables
vmin Minimum value in all the values for

related variables
vN Value to be normalized
vR Value will be normalized
z Weighted sum of the inputs

Subscripts

o Output value
p Pattern
t Target value
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